
Advances in Information Security 107 

Network Security 
Empowered 
by Arti� cial 
Intelligence

Yingying Chen
Jie Wu
Paul Yu
Xiaogang Wang Editors



Advances in Information Security 

Volume 107 

Series Editors 

Sushil Jajodia, George Mason University, Fairfax, VA, USA 

Pierangela Samarati, Milano, Italy 

Javier Lopez, Malaga, Spain 

Jaideep Vaidya, East Brunswick, NJ, USA



The purpose of the Advances in Information Security book series is to establish 
the state of the art and set the course for future research in information security. 
The scope of this series includes not only all aspects of computer, network security, 
and cryptography, but related areas, such as fault tolerance and software assurance. 
The series serves as a central source of reference for information security research 
and developments. The series aims to publish thorough and cohesive overviews on 
specific topics in Information Security, as well as works that are larger in scope 
than survey articles and that will contain more detailed background information. 
The series also provides a single point of coverage of advanced and timely topics 
and a forum for topics that may not have reached a level of maturity to warrant a 
comprehensive textbook.



Yingying Chen • Jie Wu • Paul Yu • 
Xiaogang Wang 
Editors 

Network Security 
Empowered by Artificial 
Intelligence



Editors 
Yingying Chen 
Department of Electrical and Computer 
Engineering 
Rutgers University 
New Brunswick, NJ, USA 

Paul Yu 
Network Sciences 
Army Research Office (ARO) 
Raleigh, NC, USA 

Jie Wu 
Department of Computer and Information 
Sciences 
Temple University 
Philadelphia, PA, USA 

Xiaogang Wang 
Secure and Trustworthy Cyberspace (SaTC) 
National Science Foundation (NSF) 
Alexandria, VA, USA 

ISSN 1568-2633 ISSN 2512-2193 (electronic) 
Advances in Information Security 
ISBN 978-3-031-53509-3 ISBN 978-3-031-53510-9 (eBook) 
https://doi.org/10.1007/978-3-031-53510-9 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2024 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9
https://doi.org/10.1007/978-3-031-53510-9


Preface 

Information assurance in network science must provide authentic, accurate, secure, 
reliable, and timely information to warfighters to achieve information dominance, 
regardless of threat conditions. Computing and information processes may be 
carried out over distributed and heterogeneous systems, which may include mobile 
edge, mobile computing and communications systems, and high-performance infor-
mation process systems that are inter-connected through both tactical and strategic 
communication and network systems. The advancement of artificial intelligence 
(AI) and machine learning (ML) has led to new opportunities for efficient tactical 
communication and network systems but also brought in new vulnerabilities. 

The topics of this book will be futuristic and forward-looking on security in 
spectrum management, mobile networks, and next-generation wireless networks in 
the era of AI/ML. Topics include, but are not limited to, robust and trusted wireless 
and mobile networks, models and metrics for next-generation robust systems, 
cyber deception, the principle of moving target defense, trusted learning for cyber 
autonomy, spectrum management, and network forensics. 

The main goal of this book is to collect the recent developments on the 
principles, techniques, and applications of AI/ML in future network security and 
applications. It will focus on various threat models/behaviors and the corresponding 
countermeasures using AI/ML techniques. This book will be of value to academics, 
researchers, practitioners, government officials, business organizations (e.g., exec-
utives, marketing professionals, resource managers, etc.), and even customers— 
working, participating, or those interested in fields related to AI/ML in future 
network security and applications. 

This book accepts contributions from various topics in the field of AI/ML 
in future network security and applications. There are several existing books on 
AI/ML for cybersecurity: 1. Artificial Intelligence for Cybersecurity, M. Stamp  et  
al. (Eds), Springer; 2. Illumination of Artificial Intelligence in Cybersecurity and 
Forensics, S. Misra et al. (Eds), Springer; 3. Machine Learning and Cognitive 
Science Applications in Cyber Security, S. M. Kahn, IGI Global; 4. Handbook

v
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of Research on Machine and Deep Learning Applications for Cyber Security, P.  
Ganapathi, IGI Global; and 5. Machine Learning and Security: Protecting Systems 
with Data and Algorithms, C. Chio, O’Reilly. However, none of the existing books 
cover AL/ML in the network aspect of cybersecurity. 

The content of the book will be especially useful for students in areas like 
computer networks, artificial intelligence, machine learning, and data science, who 
would benefit from the information, cases, and examples therein. This book can 
also be used as a reference/textbook for the above areas. The secondary audience 
includes practical partitioners in industry in these areas. The focus of this book is 
to expose readers to the technical challenges in building AI/ML techniques to be 
applied in future network security and applications. This book is organized into 4 
parts with a total of 15 chapters. Each part corresponds to an important snapshot, 
starting from an introduction and overview of general future networking. 

• Part I: Architecture Innovations and Security in 5G Networks (Chaps. 1 and 2) 
• Part II: Security in Artificial Intelligence-Enabled Intrusion Detection Systems 

(Chaps. 3, 4, and 5) 
• Part III: Attack and Defense in Artificial Intelligence-Enabled Wireless Systems 

(Chaps. 6, 7, 8, 9, and 10) 
• Part IV: Security in Network-Enabled Applications (Chaps. 11, 12, 13, 14, 

and 15) 

Part I provides the foundation for our exploration. Chapters 1 and 2 delve into the 
architectural innovations and security challenges of 5G networks. The development 
of novel network structures and decision-dominant defense strategies in the context 
of 5G technology and its potential vulnerabilities is thoroughly discussed. 

Chapter 1 addresses the challenge of designing and validating a standalone next-
generation mobile core network architecture necessary to support the requirements 
of 5G radio access technologies and beyond. More specifically, this chapter 
describes a new network architecture called nCore, which can support the require-
ments of 5G and beyond. This architecture includes both security and privacy 
components. The core of nCore is based on a distributed information-centric 
structure with unique identifiers for network objects together with the concept of 
locator-ID separation. 

Chapter 2 develops a game-theoretic framework for the decision-dominant zero-
trust defense of 5G networks. This chapter studies multi-domain warfare and the 
complexities introduced by 5G technologies. Given the potential vulnerabilities of 
diverse interconnections and supply chains, the emphasis is on adopting a zero-
trust architecture. The proposed solution leverages a 5G satellite-guided air-ground 
network, using a decision-dominant, learning-based approach to preemptively 
counter threats. The research showcases a game-theoretic design enriched by meta-
learning, ensuring robust defense in modern warfare environments. 

Part II directs its focus toward the intricate relationship between artificial 
intelligence and security. Chapters 3 to 5 provide an in-depth examination of
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intrusion detection systems, exploring their vulnerabilities and highlighting the 
crucial role that AI and machine learning play in enhancing both defense and 
vulnerability assessment. 

Chapter 3 includes discussions on both defense and vulnerability in IDS. This 
chapter starts with an overview of intrusion detection systems and then discusses 
the relationship between security and AI/ML. The authors evaluate the security of 
AI/ML systems from an end-to-end perspective. This approach accounts for system 
vulnerability and discusses the need for a vulnerability disclosure program AI/ML. 

Chapter 4 explores the properties of the adversarial examples’ transferability. 
The authors use different Adversarial Examples (AEs) to interact with different 
well-trained models to find the key insights of transfer attacks in the network. 
This chapter investigates the vulnerabilities of network traffic packet detection 
systems to AEs, where slight modifications to network packets can deceive detection 
systems. While current AEs are based on white-box settings, the chapter explores 
their potential transferability to black-box models. By examining various intrusion 
detection systems and creating distinct models, the study assesses the efficacy of 
various AEs against these models. The findings highlight certain commonalities 
between transfer and white-box attacks, suggesting avenues for more advanced 
transfer attacks in upcoming research. 

Chapter 5 reviews the state-of-the-art machine learning and deep learning-based 
intrusion detection methods for Software Defined Networking (SDN), discussing 
both defense and vulnerability. This chapter explores the promise and challenges 
of SDN, a groundbreaking option for the Internet’s future growth. While SDN 
enhances network flexibility and control, it also introduces vulnerabilities, making 
it especially prone to Denial-of-Service (DoS) attacks. To counteract these threats, 
integrating an IDS within SDN is vital. The chapter delves into advanced machine 
learning and deep learning-based IDS approaches tailored for SDN, assessing 
their performance on criteria like accuracy and processing time. Through hands-
on evaluations, the chapter seeks to pinpoint the most effective IDS methods for 
SDN setups. 

Part III takes a closer look at the dynamic arena of wireless systems and their 
susceptibility to attacks. In Chaps. 6 and 7, deep learning is explored as a means 
to fortify wireless communications and confront adversarial threats in millimeter-
wave-based systems. Innovative solutions are presented to ensure robust and secure 
wireless connectivity. 

Chapter 6 presents three Deep Learning-based solutions for achieving robust 
and secure wireless communications from a defense perspective. This chapter 
explores the vulnerabilities in wireless communications due to the growth of mobile 
technologies and increasing spectrum demand. As these systems evolve to be 
more software-centric, they face threats from entities like jammers and drones. 
Drawing from Deep Learning’s successes in areas such as computer vision, the 
chapter presents three strategies: a system for pinpointing wireless collisions, the 
“JaX” technique using Convolutional Neural Networks to combat jammers, and
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“DEFORM,” a beamforming method that leverages neural networks for robust 
communications across diverse RF signals. 

Chapter 7 investigates both white-box and black-box adversarial attacks on 
millimeter-wave (mmWave)-based HAR systems from the attack perspective. It 
deals with mmWave and its applications in Human Activity Recognition (HAR). 
This chapter surveys various adversarial attacks, including white-box and block-
box, on mmWave systems. Two solutions are proposed: one for white-box attacks 
and the other one for black-box attacks. 

In Chap. 8, various attack methods and defense schemes are evaluated in 
several wireless positioning systems from an attack perspective. This chapter 
studies wireless localization that uses wireless technologies to obtain position-
related information for target localization. Various attacks and defense schemes are 
evaluated in several positioning systems to show the vulnerabilities in deep learning-
based localization systems and, hence, to show the importance of a robust system. 

Chapter 9 utilizes Convolutional Neural Networks (CNN) to improve localization 
accuracy for both single and multiple simultaneous wireless transmitters from a 
defense perspective. Specifically, this chapter explores Received Signal Strength 
(RSS)-based localization techniques based on crowdsourced measurements and 
CNNs to improve localization accuracy. It is shown that adversarial training is 
effective as a defense mechanism against adversarial attacks. Some challenges in 
designing practical localization systems are also discussed. 

Chapter 10 is motivated by wireless communication scenarios. It introduces 
the state-of-the-art results on bandits and Reinforcement Learning (RL) and their 
importance on network security under limited defender resources. This chapter 
investigates RL, emphasizing its adaptability in communication networks and its 
pivotal role in challenges like protein folding. The discussion delves into adver-
sarial RL, highlighting the challenges agents confront in frequently updating their 
strategies in dynamic environments. Particularly for energy-constrained devices, 
“switching costs”—the expenses of policy changes—emerge as a crucial metric. 
The research presents the latest insights on RL and bandits considering switching 
costs, underscoring their significance in resource-limited network security, and 
suggests potential avenues for future research. 

Part IV broadens the perspective to survey the diverse applications of these 
emerging technologies in the realms of network-enabled applications. It offers 
a panoramic view of the security and privacy challenges within these domains. 
Chapters 8 to 15 scrutinize the vulnerabilities and defense strategies in various 
application areas, including augmented reality, federated learning, and cyber-
physical systems. This examination sheds light on the intricate interplay between 
technology and security in these contexts. 

Chapter 11 discusses security and privacy in augmented reality (AR). It focuses 
on pure AR systems without any network component. Specifically, this chapter 
discusses AR systems that rely on real-time sensing through various sensors to 
understand the physical environment. The focus is on AR vulnerability under 
attacks in both security and privacy based on the analysis of the sensor signal
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processing flow and the design of sensor hardware. This chapter also studies existing 
countermeasures. 

Chapter 12 focuses on the AR system. It includes some discussions in both attack 
and defense regarding network-based approaches. This chapter looks at AR security 
and privacy challenges based on the interactions between AR applications and users, 
which include data privacy, authentication, and authorization. The current state-of-
the-art AI/ML-based protection solutions are studied, including deep learning and 
reinforcement learning. 

Chapter 13 centers around malware detection. It proposes a lightweight image-
based malware classifier resilient against four adversarial attacks in black-box and 
white-box settings. This chapter delves into the vulnerabilities of machine and deep 
learning models in network security, highlighting the risks posed by adversarial 
samples. In response, a lightweight image-based malware classifier using CNN 
is proposed. This classifier analyzes Windows Portable Executable (PE) malware 
images and proves resilient to adversarial attacks, maintaining high accuracy even 
under increased perturbations. Notably, compared to the leading MalConv classifier, 
it significantly reduces training time and trims random-access memory usage by 
threefold. 

Chapter 14 provides an overview of vulnerabilities and defense strategy in 
federated learning. This chapter explores federated learning (FL), a decentralized 
artificial intelligence approach that promotes collaborative learning without direct 
data sharing. While FL’s decentralized framework offers distinct advantages, it 
also becomes especially vulnerable to adversarial attacks, such as backdoor and 
byzantine attacks. The intricacy of these threats, heightened by adversaries poten-
tially acting as participants, raises barriers to the global acceptance of FL models. 
The chapter meticulously scrutinizes the unique attributes of each security threat 
and the inherent susceptibilities of FL. Additionally, it sheds light on defense 
strategies to identify malicious actors or mitigate the effects of attacks on the 
overarching model. 

Chapter 15 focuses on pure Cyber-Physical Systems (CPS). It includes a dis-
cussion on CPS security and network-enabled applications. This chapter examines 
the integration and implications of CPS in safety-critical sectors like robotics and 
power systems, noting that faults and cyberattacks can jeopardize safety and human 
lives. With a surge in research focusing on CPS security over the past decade and 
the rise of AI and machine learning in various applications, there is an inclination 
to leverage AI/ML for CPS security. However, the authors offer insights and 
cautionary lessons. They emphasize understanding the role of physical systems, 
cyber effects, their interactions, system controls, and the potential of AI/ML in 
enhancing CPS resilience while also discussing its limitations and future research 
challenges. 

We would like to express our gratitude to all the contributing authors. This 
book would not be possible without their generous contributions and dedication 
time wise. We also thank the Army Research Office (ARO), who sponsored a
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special workshop upon which most of the authors of this book were drawn. Our 
special thanks are given to the Springer managing editor Susan Lagerstrom-Fife and 
production editor Arum Siva Shanmugam, who gave us both initial encouragement, 
support, and continuous guidance during the book editing process. Finally, we 
would like to thank our families for their great understanding and patience during 
this project. Readers are encouraged to provide feedback to the contacts below. We 
hope readers will find this book useful in their studies or in their workplace! 

New Brunswick, NJ, USA Yingying Chen 
Philadelphia, PA, USA Jie Wu 
Raleigh, NC, USA Paul Yu 
Alexandria, VA, USA Xiaogang Wang
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Part I 
Architecture Innovations and Security in 

5G Networks



nCore: Clean Slate Next-G Mobile Core 
Network Architecture for Scalability 
and Low Latency 

Shalini Choudhury, Shreyasee Mukherjee, Parishad Karimi, 
and Dipankar Raychaudhuri 

1 Introduction and Background 

This chapter addresses the technology challenge of designing and validating a 
standalone next-generation mobile core network architecture necessary to support 
the requirements of 5G radio access technologies and beyond. The importance of 
dramatically improving the efficiency, performance and functional capabilities of 
mobile/wireless networks has been recognized for some time. This goal has become 
particularly urgent with the emergence of smartphones as the primary computing 
and communication platform and the continuing exponential growth in mobile data. 
5G systems aim to provide a significantly enhanced mobile user experience with . ∼
gigabits per second (Gbps) wireless bit-rates, low latency, and improved reliability. 
New radio access technologies, including massive MIMO [1], millimeter wave 
[2], and centralized radio access network (CRAN) [3], are proposed to achieve 
large gains in physical layer performance. Support for Internet-of-Things (IoT) 
applications is another important 5G design goal, introducing requirements such as 
high device density, low complexity and energy efficiency. Next-generation wireless 
systems are expected to support time-critical applications like augmented reality 
(AR), autonomous vehicles, and real-time control. These applications require edge 
network latencies of 10ms or lower, an order of magnitude reduction relative to 
existing LTE cellular networks. 

Though still at an early stage of conceptualization, beyond 5G (“B5G” or “6G”) 
scenarios are expected to feature even higher bit-rates of approximately 10 Gbps [4] 
and lower latencies around 2–5ms [5]. Additionally, the next-generation network 
will introduce new functionalities, including support for content retrieval, context-
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aware messaging, in-network processing, and integration of cloud services into 
the edge network fabric. When considering 5G and 6G designs, much of the 
focus has been on the radio access technology to achieve higher wireless bit-
rates. However, end-to-end service quality depends very strongly on the capabilities 
and performance of the wireless edge network. The current 3GPP architecture of 
mobile edge networks has evolved through two generations of cellular (3G and 4G). 
However, it is fundamentally limited by its evolutionary design, which incorporates 
legacy signaling from switched telecom networks. This design integrates with 
Internet protocols using a complex design based on gateways and tunnels [6]. 

It should be noted that in 5G Phase 2 and beyond, standardization groups such 
as IETF DMM [7], etc. are exploring alternatives for GPRS Tunneling Protocol 
(GTP) [8]. Potential replacements being considered include Segment Routing IPv6 
[9, 10], Locator/ID Separation Protocol (LISP) [11] and Host Identity Protocol 
(HIP) [12]. This clearly motivates that the mobile core network design has to change 
significantly in order to meet the increasingly complex and diverse requirements 
associated with 5G/6G. Thus motivating consideration of optimized clean-slate 
designs that could initially be applied to private networks at the wireless edge. 
Information-centric network techniques based on the use of content routing, named 
data [13] or named objects [14] offer a fundamentally new architectural framework 
on which to design clean slate wireless edge protocols. 

This chapter presents a distributed flat core network design that leverages the 
concept of identifiers appended with distributed mapping to achieve optimal routing 
(without data packets traveling through tunnels and gateways), low latency, seamless 
mobility and scalability while providing flexibility for future services. The name-
based architecture starts with the premise of identifying an endpoint with a persistent 
name separate from the routable address(es) associated with the endpoint. Assuming 
endpoints (smartphones, cars on a highway, etc.) are inherently mobile, address(es) 
associated with each may change as the endpoint moves and associates with 
different access networks. However, the mobile device can always be uniquely 
identified by its name (endpoint identifier, EID), forming the crux of “Locator-ID” 
split architectures which utilize a mapping service to maintain an up-to-date name-
to-address mapping. Identifier and locator separation schemes have been adopted by 
academic and industrial researchers as the major design pillars for clean-slate design 
towards evolving internet architecture. The most notable locator-ID split name-
based architectures that have been proposed in this context include LISP [11], HIP 
[12], NDN [13] and Mobility First [14]. While these name-based architectures have 
mostly been studied in the context of intra and inter-domain routing, content delivery 
networks, and data center networks, our approach aimed at mobility services here is 
different. A high-level representation of 3GPP core and nCore architecture is shown 
in Fig. 1. The physical fabric of the 3GPP standardized core is hierarchical in nature, 
with a single point of entry into the network via access and mobility management 
function (AMF) and exit through the user plane functions (UPFs). All traffic flows 
through tunnels between 3GPP and non-3GPP access networks and UPFs to reach 
the data network. On the contrary, nCore shown in Fig. 1 exhibits no single anchor 
point for entry or vendor-specific UPFs for exiting into the data network.
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Fig. 1 Network core architectures: 3GPP core and nCore 

The proposed Locator-ID split network architecture relies on a scalable, dis-
tributed mapping system named global name resolution service (GNRS) [15]. 
GNRS binds name and address and facilitates services in the 5G and beyond 
architecture and the cellular mobile core. The user equipment (UE) mobility is 
handled by assigning it a unique name and mapping it to the routable address of 
the base station (next generation node B (gNB), access point (AP)) to which it is 
currently attached. In addition, by removing the gateways from the core, packets 
can flow freely into and out of the network through the ‘best’ path guided by 
distributed routing policies. The Locator-ID split, along with a dynamic name 
resolution (mapping) provides a natural solution for mobility management while 
also addressing fundamental scalability and latency limitations inherent to the 
current 3GPP architecture [14]. 

2 Next-Gen Mobile Core Requirements 

5G and beyond services demand throughput in tens of Gbps implying a 10–100. ×
increase in data rate from the previous generation of networks, along with sub 
5-ms latency and upto 100. × number of connected devices per unit area. The 
5G architecture takes the separation between the control and data plane one step 
further in comparison to LTE. The control part of the UPF packet gateways are
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separated from their data plane counterparts and new interfaces are defined between 
these new components. The greater degree of separation between the control and 
data plane components, and more granular allocation of tasks to components, may 
indeed simplify each component. However, it also has the effect of increasing the 
number of components involved in serving a user’s request, as well as the number 
of messages exchanged between them. This motivates the consideration of clean-
slate designs of the 5G control plane with the goal of significantly improving 
latency and scalability. It is necessary to re-think the next-gen cellular networks 
with a focus on increasing throughput, reducing latency and eliminating centralized 
bottlenecks. In [6] the authors propose a redesign of the 5G control plane (called 
“CleanG”) aimed at reducing protocol overhead and improving network throughput. 
In this work, we describe a new identifier-based clean-slate design that offers further 
improvements in latency and throughput performance. In the following sections, we 
first discuss the mobile core network requirements and then introduce the nCore 
design responsive to these objectives. 

2.1 Ultra-High Bit Rate 

A per-flow throughput of a gigabit per second per mobile user motivates a “bearer-
less” network model tunnels to a centralized gateway, a potential bottleneck 
for anticipated traffic volumes associated with Gbps wireless links. Additionally, 
the dual-mode 5G core designed for interworking with legacy 4G networks and 
evolution of 5G, integrates cloud-native network functions (NF) with Virtual or 
Physical NFs. In the dual-mode 5G core, the packet core gateway acts as the 
common convergence point from which traffic flows toward the base station or 
packet data network (PDN). Studies show that a typical US based network provider 
has a limited number of gateways (4–6) [16] through which all endpoint traffic enters 
and exits the network. As a result, cellular data networks impose restrictions on 
routing data traffic by traversing only through the available UPF session anchors. 
This implies that system throughput may be limited by the capacity of these 
gateways in the hierarchically designed network. 5G networks should be designed 
to support traffic volumes of . ∼100 Gbps to 1 Tbps, thus requiring a distributed 
network design without a centralized processing or routing bottleneck. 

2.2 Low Latency 

Achieving an order of magnitude reduction of service latency (. <5ms) has been a 
baseline requirement for 5G [15]. The latency of packet delivery is caused by several 
factors, including delays in both the control plane (CP) and the data plane (DP). One 
of the dominant delays in mobile networks is the CP latency associated with setting 
up a path for forwarding the first packet in a flow. Typically, data forwarding in
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cellular networks involves a bootstrapping phase where an attaching device needs 
to authenticate and set up a session with the network. Given the hierarchical nature 
of the network and the legacy components, this step may involve exchanging more 
than 20 messages with the AMF and the session management functions (SMF), 
which accounts for up to 168.7ms on average before a session is established [17]. 
These messages are primarily: authentication, mobility management and session 
management overheads. In the conventional gateway architecture, initial gateway 
signaling latencies can be significant components of the overall delay. In nCore, 
we envision a shift from per-flow signaling to a more distributed packet-switching 
approach, wherein forwarding decisions are made on a per-packet basis instead of 
maintaining a long-lived end-to-end session to a packet gateway. This is especially 
beneficial for devices that do not send a large amount of data at a time, such as IoTs, 
as described next. 

2.3 Support for Internet-of-Things 

According to Cisco, IoT connections will go from 6.1 billion in 2018 to 14.7 
billion by 2023 [18]. Most of these devices are power-constrained while sending 
sporadic bursts of short packets. Consequently, their requirements are quite different 
from typical cellular endpoints. High bandwidth is not a strict requirement for IoT 
devices, but low overhead control protocols are required in order to improve network 
efficiency (loosely defined as the ratio of data vs. control bytes). Narrowband IoT 
(NB-IoT) is the current solution that assigns a separate channel solely for the use of 
IoTs. However, if NB-IoT is used in conjunction with the existing core network, this 
will result in high control overhead compared to the low data traffic rate that IoTs 
typically need. One solution proposed for NB-IoT is to go through all the control 
protocols for authentication, mobility and session management during bootstrapping 
but then cache this state at the basestation. Once this is done, the session does 
not need to be re-established every time a device wakes up to send a few bytes of 
data. This approach assumes these devices are static and will not require handover 
capabilities. This approach does not apply to IoT devices such as static power-
constrained motes on an agricultural farm to highly mobile automotive tire pressure 
sensors. Many of these IoT devices will be unable to use NB-IoT unless significant 
improvements in the network protocols are made to improve latency and mobility. 

2.4 Heterogeneity in Access Networks 

3GPP release 15 envisions multiple access networks that can be plugged into the 
same core network. The core network should be radio technology agnostic and 
support a mix of 4G, 5G and WiFi radio access technologies. For this purpose, 
all the components of the core have been modularized such that if required



8 S. Choudhury et al.

a subset of these components can be stitched together to form a network by 
bypassing the rest of the modules. This is relevant to the design proposed here, 
as modularization is consistent with a distributed flat nCore that can be stitched to 
multiple heterogeneous access networks. In order to utilize multiple of these access 
networks simultaneously and more efficiently, a distributed core will provide better 
path availability and reduce the chances of traffic bottleneck. 

3 nCore Network Architecture 

Based on the next-generation mobile core requirements, nCore network aims to 
offer a seamless, connected experience for the end users. The distributed nCore 
is designed to address key challenges of 3GPP standardized core, including reacha-
bility, fast handoffs, multi-homing support and radio resource management. In view 
of achieving the above requirements, the flat mobile core has the following key 
features: (1) Distributed control: There are no gateways in the architecture and no 
end-to-end session management protocols; (2) Routing functions distributed across 
all network components: Access networks as well as core network components 
all perform routing and mobility management functionality; (3) Traffic can flow 
into and out of the network freely to and from multiple ingress and egress 
points. Furthermore, the access points, and correspondingly the user devices, can 
employ either unlicensed or new alternatively-licensed bands (such as the proposed 
Federal Communications Commission (FCC) small-cell band) for the last hop. 
The proposed nCore network considers potential security and privacy threats for 
designing a network architecture. Security concerns are addressed by securing 
GNRS updates and queries and additionally creating a framework for anonymity. 
A discussion on nCore architecture, security and privacy is presented in this section 
to understand how the clean slate nCore architecture overcomes the control and data 
plane limitations of the standardized state-of-the-art 3GPP network core. 

3.1 Architecture Overview 

The high-level network architecture of the distributed core network is shown in 
Fig. 2. The radio resource control (RRC) connection setup, authentication and UE 
attachment to the network remain unchanged. The nCore removes the SMF as well 
as the gateways and instead utilizes the distributed protocol logic at gNBs and 
routers in the network (hence the term “flat” mobile core). The nCore architecture is 
based on the concept of unique identifiers or names for UEs along with a distributed 
mapping (D-map) service. This leads to mobility support, reducing bottleneck at 
the AMF which handles 3 times more traffic than the gateways [19]. In the nCore 
architecture, this service is called global name resolution service (GNRS) and



nCore: Clean Slate Next-G Mobile Core Network Architecture for Scalability. . . 9

Fig. 2 nCore control and data plane with distributed mapping 

is implemented as a distributed hash table in which all routers of the network 
participate [15]. 

The authentication entity, which is tasked with maintaining UE subscription, 
policy and charging information of the network, remains as part of the core. 
The BSs communicate with it directly to authenticate the UE and to obtain 
relevant policies pertaining to that UE during the bootstrapping phase. With 
no SMF, the bootstrapping phase now only has authentication and distributed 
mobility management. The network being completely flat results in a plug-and-play 
capability, where multiple radio access technologies (such as 4G, 5G or WiFi) can 
be plugged in. This capability allows the network to grow organically, provided all 
the network components participate in the control plane that supports the D-map 
and authentication functions. 

3.2 Mobility Management 

The distributed mobility service is based on assigning permanent global identifiers 
for all network attached devices along with the routers [20]. All routers in the 
network participate in a distributed hash table implementation, wherein all the map-
pings of endpoint names to their routable addresses (address of the BSs an endpoint 
is connected to) are stored across routers in the network. The mapping service is 
therefore physically distributed; however, as in any hash table implementation, given 
an endpoint name, it can be hashed to obtain the unique address of the router that 
needs to be queried in order to find the up-to-date name-address mapping and hence 
the current location of that endpoint. 

The service also has resiliency mechanisms such as storing the mapping infor-
mation of an endpoint at multiple locations using multiple hash functions in case 
any of the routers go down. The control overhead of maintaining such a distributed 
mapping service is light as these routers need not run additional synchronization 
protocols, provided they all have adequate storage capabilities and the bandwidth 
for query/response of their local databases. Prior work on such distributed services
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has proven them to be scalable to Internet-size networks [19]. Detailed evaluations 
for large global scale topologies have shown that query/response latencies can be as 
low as 10ms [15] with suitable optimization and caching techniques. 

3.3 Packet Forwarding 

Given the underlying routing and mapping services, a UE joining the network first 
establishes an RRC connection with a nearby BS, followed by authentication at the 
BS via similar protocols as in 5G, as shown in Fig. 2 control plane. Policy and 
charging along with authentication, authorization, and accounting information are 
communicated directly to the authenticating BS. The UE name-to-address mapping 
is updated in the GNRS. In the data plane, data can now flow freely following 
a packet-switched network paradigm. A nCore specific data plane scenario is 
highlighted in Fig. 2 data plane, where a data packet carries both the endpoint 
identifier and the current location of the endpoint. A source UE sends data to a 
destination identified by its name (Dest-ID). The first hop router at the BS looks 
up the database to find the (Dest-ID) to address mapping which is then appended 
to the packet. Consecutive routers simply forward packets by looking up their 
forwarding tables for that particular address. Packets, therefore, enter/exit the core 
network along the best intra-domain routing path, which may also reflect UE-
specific policies. 

3.4 Policy and Charging 

The nCore network no longer uses centralized services (with the exception of the 
authentication server) or packet gateways. A dedicated network function (NF) co-
located with the BS ensures that appropriate amounts of bandwidth are dynamically 
allocated to each service in real time. Prior to launching new services, the policy 
and charging NF needs to validate operator-related policy rules to ensure there 
is sufficient capacity to provide the requested services. Charging is applicable to 
each service data flow and is primarily based on information such as application 
identifier, type of stream (audio, video, etc.), application data rate, etc. 

3.5 Security in nCore Architecture 

In the nCore architecture each network element has three attributes: a user-level 
descriptor (i.e. human-readable name, e.g. John’s phone), a network-level identifier 
(globally unique identifier, or GUID) and a routable address (network address, or 
NA). In the two-step approach to name resolution in nCore, a Name Certificate
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Fig. 3 Secure GNRS update and query 

Service (NCS) is used to translate user-level descriptors into GUIDs, while the 
GNRS provides the mapping between GUIDs and the corresponding NAs. The 
benefits of a resolution service are undermined when subjected to security threats, 
and consequently, any clean-slate name resolution service should give security 
significant consideration. In the design choice to secure GNRS there are two 
components involved: 

Secure GNRS Update As seen in Fig. 3, when user A in network NA1 needs 
to update its mapping (.GUIDA,NA1), it sends an update to the local router. 
This GNRS mapping update includes timestamps to prevent stale mapping attacks. 
The mapping expiration time ensures freshness but must be balanced to prevent 
security risks or high overhead. The update is signed with the user’s private key, 
securing against spoofing attacks. Lastly, the update message includes encryption 
and verification elements to ensure secure communication. Local router L verifies 
the (.GUIDA,NA1) correctness of the mapping and forwards it to the border 
gateway router G for NA1. The mapping update message is signed by L’s private key 
and subsequently encrypted by receiver G’s public key. Further, G communicates 
with DHCP server to verify A’s NA, if the response from D matches the mapping 
sent by A and forwarded by L, the mapping will be stored in X in NA2 [21]. 

Securing GNRS Query The GNRS query process involves a user retrieving a 
network address for a known GUID, shown in Fig. 3. The user, border gateway 
router, and mapping storage location participate in the process, which comprises 
four steps [21]: 

1. User B sends a query for User A’s GUID to their border gateway router, S, signed 
with B’s private key and encrypted using S’s public key. 

2. After verification, S hashes the queried GUID and forwards the request to the 
nearest mapping storage location, X. 

3. X validates the request and returns A’s mapping to S. 
4. S then forwards A’s mapping to B, who can verify the mapping with timestamps 

and signatures. 

GNRS Access Control Policies GNRS supports mobility by enabling a host to 
inform other network elements of the change in its location. However, it requires 
protection against illegitimate users querying and exploiting these mappings to



12 S. Choudhury et al.

avoid privacy breaches and other serious issues, such as DoS attacks or user behavior 
tracking by malicious attackers. Integrating access control into GNRS can help 
protect user location information from unauthorized exposure while maintaining 
accessibility for authorized users. Therefore, the owner of the GNRS mapping sets 
an access policy and submits it to the GNRS. Authorized users are identified directly 
through attributes from the NCS, while GNRS supports various access control 
schemes, catering to a range of applications [22]. 

3.6 Privacy in the nCore Architecture 

In the nCore architecture, privacy concerns are brought about by mobility, particu-
larly location privacy. Location privacy is the capacity to conceal the geographical 
location of a communication endpoint (including hiding the network topology 
location when it might allow deductions about the node’s physical location). 
Furthermore, other privacy aspects at the network layer are also considered, which 
includes sender-receiver privacy. 

Analysis Model and Privacy Baseline In the nCore framework, it is significant 
to evaluate the privacy of communication content, the confidentiality of commu-
nication participants, and the confidentiality of location. There are three different 
kinds of locations that the attacker can reside in: (1) near the user (e.g. in the access 
network, WiFi network), (2) beyond the access network (e.g. 1 or more hops beyond 
the access network), and (3) near the destination server. An attacker may simply 
aim to identify who is accessing a specific server, a goal achievable through passive 
tapping near the server’s access network. Meanwhile, attackers from the second 
category might inhabit operators’ networks. 

A privacy framework, Chameleon offers server-side disposable identifiers and 
anonymity for both sender and receiver. Drawing from the strengths and overcoming 
the limitations of systems like Tor, Chameleon uses a network of resolvers for nodes 
seeking anonymous contact, while a set of relay nodes is employed for initiating 
anonymous communications. Notably, the design achieves reduced cryptographic 
overhead compared to other low-latency anonymity systems and supports the 
mobility of both communication parties [23]. 

LAP: Lightweight Anonymity and Privacy The LAP framework is aimed at 
providing private and anonymous communication on the Internet [24], characterized 
by: 

Low-stretch anonymity: This ensures packets for private communication travel 
through near-optimal routes to keep the increment in Autonomous Domains 
(ADs) low relative to the original path length. 

Relaxed attacker model: A moderate level of privacy, including sender/receiver 
anonymity and location privacy, thus relaxing the conventional strong attacker 
model.
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LAP is an efficient, practical network-based solution with lightweight path 
creation and effective communication. It enhances anonymity by hiding an end-
host’s topological location through two key components: 

• Packet-carried forwarding state: Here, each packet carries its forwarding state, 
allowing ADs to decide the next hop without maintaining local per-flow state. 

• Forwarding-state encryption: Unlike existing systems that decrypt/encrypt entire 
packets, LAP lets each AD use a secret key to encrypt/decrypt forwarding 
information in packet headers, keeping an AD’s forwarding data hidden from 
all other entities. 

Notably, LAP is minimal in overhead and compatible with various routing 
protocols, and it offers adjustable privacy levels. 

4 Mobility Control Plane Protocol for UE States 

A comparison between 3GPP 5G core and the nCore approach is shown, where the 
protocol is outlined for events like initial attach, idle-to-connected and handover. 

4.1 Initial Attach 

This event is triggered when the UE starts using the network for the first time. 
The detailed protocol exchanges over the 5G core is shown in Fig. 4. When the 
UE wants to start using the network, PDU session is created by a sequence of NG 
tunnels. This set of “pipes” connects the UE to its control functions and eventually 
to the data network for traffic exchange. The 5G core is tasked to establish and 

Fig. 4 Initial attach control messages for 3GPP 5G core and nCore
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release the tunnels and the bearers dynamically to follow user movements and 
states. The control message overhead of creating and realizing the tunnels are 
unsustainable with the anticipated workloads in a 5G network, as discussed in [25]. 
nCore maintains no sessions, while RRC connection setup, authentication and UE 
attachment remains unchanged as shown in Fig. 4. The unified data manager (UDM) 
functions as a database for users’ subscription management and the AMF/mobility 
tasks are carried out by GNRS. This architecture reduces gateway bottlenecks and 
the complexity of encapsulation and de-capsulation of data packets at the tunnel 
endpoints. 

4.2 Handover 

Handover in the conventional mobile core network is based on UE measurement 
reports. A “Handover Request” message is sent from source S-gNB to the target 
T-gNB. The T-gNB requests the AMF to switch paths and a tunnel is built to the 
target node after receiving a request from AMF. The process of handover includes 
approximately 20 control messages overhead to tear down and build dedicated paths 
which adversely affects the latency in packet forwarding [6]. 

In comparison, the nCore architecture realizes handover with 2. × less control 
messages. A cell is selected for UE handover by the S-gNB, the GNRS is queried 
for an ID to routable locator lookup of the T-gNB and the mapping is cached at the 
S-gNB. The GNRS is now updated with the new UE—(T-gNB) mapping The data 
flow is cached in the S-gNB until the UE is connected to T-gNB. Once the mapping 
system is updated the UE resumes data flow both uplink and downlink. The cached 
data packets at the S-gNB are directed towards the UE’s new point of attachment. 

4.3 Idle-to-Connected 

The transition from RRC-idle to RRC-connected in the 3GPP standard results in 
control exchanges involving as many as 17 messages. The GTP tunnel is torn down 
once the UE moves to idle state and rebuild when the UE transitions to active 
state again, adding to transmission and connection delays. The nCore design has 
no hierarchical gateways, hence when transitioning from idle-to-connected only 
the UE location has to be updated to the mapping database in case the UE has 
transitioned to a new location. The policy and authentication for the UE is pushed 
and cached at the current gNB the user device is connected to. This minimizes the 
number of network transactions since the proposed design does not re-establish a 
session every time a device wakes up to send a few bytes of data. All the session 
management control messages are excluded from nCore network and GUIDs along 
with the GNRS service support UE’s mobility.
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5 nCore Support for 5G Use Cases 

The nCore architecture can natively support 5G services with reduced control and 
data plane complexity and overhead. Out of the multiple 5G use cases nCore can 
support, in this section, we will discuss four such use cases. 

5.1 5G Mobility 

Support for service continuity (uninterrupted user experience with a possible change 
of IP address or anchoring point) and session continuity (preserving the end-point 
IP address for the lifetime of the session) has become increasingly challenging to 
be sustained for low-latency applications in highly mobile scenarios. The current 
support of mobility in cellular networks (intra-network or inter-network mobility) 
involves numerous control message exchanges. The current support of mobility 
in cellular networks (intra-network or inter-network mobility) involves numerous 
control message exchanges. The new 3GPP spec [26] proposes a number of 
solutions to detect low-latency applications and fulfill their latency requirements 
by enhancing the existing protocols supporting UE mobility. Separation of control 
plane and user plane functionalities within gateways proposed in 5G allows for 
independent scaling of each and potentially increasing the number of user plane 
gateways distributed closer to the edge. However, opting for a gateway-based 
architecture will still incur a large amount of handover signaling between the 
centralized network control plane and the distributed data plane gateways. For 
example realizing a new feature like the addition of make-before- break to inter-
RAN mobility can be initiated and controlled by the AMF, SMF and UPF from 
the source to the target network by exchanging a large number of control signals 
for breaking and creating PDU sessions. This will result in the lack of “dynamic” 
and “ultrafast” support for mobility due to necessary pre-configurations, increased 
overhead and possible bottlenecks. 

The nCore architecture supports mobility natively by binding the connection to 
identifiers and not network addresses. The name-to-address mappings stored in the 
mapping service proactively and dynamically get updated by edge routers to serve 
the highly mobile and low-latency scenarios expected in 5G [20]. Moreover, by 
exploiting features like late-binding and re-binding, which are natural consequences 
of name-based architectures, identifiers can be (re)mapped to network addresses 
closer to the edge of the network. All these characteristics make the distributed flat 
architecture proposed in this chapter a suitable candidate for support of emerging 
5G mobility scenarios.
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5.2 Multihoming 

Multihoming is defined as connectivity of an end device to multiple BSs and 
APs for improving user throughput, enabling load balancing and connectivity 
robustness in the scenario of mobility or disparate channel conditions. Multihoming 
is an important technology considered within 5G architecture for the interworking 
of heterogeneous wireless access technologies, i.e., Wi-Fi, LTE and NR. Dual 
connectivity was proposed as the first phase in the deployment of 5G, allowing 
for a user to be served simultaneously by an LTE BS and a NR BS [27, 28]. As 
a natural progression and generalization to this first phase, in [29], multi-rat dual 
connectivity is discussed. Another example of enabling multihoming within 5G 
network is LTE/NR aggregation with Wi-Fi. 

An overview of the overall architecture and signaling for a baseline mobil-
ity/multihoming scenario in the current cellular network and in nCore is depicted 
in Fig. 5. As seen in Fig. 5 for multihoming in 5G, the Master gNB (M-gNB) can 
be LTE or NR BS with control plane interface to AMF, while the control signaling 
related to Secondary gNB (S-gNB) (which can be LTE/NR in an unlicensed band 
or Wi-Fi) has to be maintained by the M-gNB. This approach of anchoring a 
secondary RAN to a master RAN has limitations for support of dynamic mobility 
and session continuity. The signaling needed for a multihomed device handover 
is shown in Fig. 5-Multihoming in 5G, with extra signaling overhead needed due 
to the S-gNB’s control interface being anchored on the M-gNB shown in red. As 
can be seen from the figure, the overhead is 2. × more than a typical handover 
scenario. Moreover, since small-cell deployments will have smaller coverage area, 
handovers will be very frequent in future mobility scenarios. As a result, exploiting 
all the wireless capacity will require a scalable and dynamic architecture for 
support of multihoming. The flat name-based architecture will natively support 
multihoming by eliminating the need for anchors and triangular routing, and all 

Fig. 5 Mobility and multi-homing in 3GPP 5G and nCore
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the RAN components interfacing with the distributed name-to-address mapping 
service to provide seamless mobility and service continuity while minimizing the 
control overhead, and hence latency. As can be seen from Fig. 5-Multihoming 
in nCore, the proposed architecture greatly reduces signaling overhead, while 
maintaining the session/service continuity by providing uninterrupted coverage and 
intermittent connectivity while moving from one macro-cell to the other. All the 
RAN components interfaces with the GNRS mapping service to provide seamless 
mobility with minimal control overhead and hence latency. 

5.3 Mobile Edge Computing 

Mobile edge computing (MEC) is introduced in the 5G network architecture to 
support applications requiring computing functionality close to the end-user with 
low round trip latencies, such as autonomous driving, AR/VR and industrial control. 
Since computing is treated as an application function and traditionally located in the 
data network, another solution proposed in 5G is to have gateways at the edge [30]. 
However, this requires additional protocols in order for edge and core gateways 
to communicate with each other and involve AMF in case the end-user is mobile. 
As explained earlier, such protocol overheads will in essence take away from the 
application low-latency requirement offered by the edge-computing. Additionally, 
session handover protocols need to be designed and implemented when the user 
moves from one access network to another which may result in breaking of session 
with one gateway and making a new session with the next. Locator-ID split core 
network architecture has the benefit of assigning names not just to users but also 
to identify specific services. For example, in nCore, an edge-computing service for 
an AR application can be assigned a unique identifier. The service itself can be 
distributed across various edge locations in the RAN and an up-to-date mapping 
of this service to all its locations is maintained in the GNRS. Packets requiring 
this service are identified by the service name and anycast to the nearest service 
instance [31]. This simplifies the control overhead of the application as (1) it does 
not require maintaining (making/breaking) of sessions with one or multiple edge 
locations; (2) the network provider can spin up new instances of the service based 
on traffic demands without having to set up gateways and protocols for the new edge 
network; (3) the service itself is agnostic to user-mobility as the distributed routing 
and anycasting will forward UE requests to the closest edge server. 

5.4 Roaming Architecture 

To support roaming 3GPP has recognized two types of services: Local break out 
(LBO) and Home routed, as shown in Fig. 6a and b. Both roaming services exploit 
similar network architecture with different interfaces between visitor and home
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Fig. 6 Roaming Architecture: (a) local breakout model (b) home routed model; (c) nCore roaming 
model 

networks. As seen in Fig. 6a, in the LBO model, the mobile user can sign up for 
an alternative service provider not similar to the one in Home-PLMN. The visitor 
network handles user requests and the visitor policy and charging function (V-PCF) 
regulates policy control and charging rules in agreement with the HPLMN. In the 
LBO roaming model, the actual services the users perceive will differ from network 
to network since the home network cannot exercise complete control over the user 
traffic, and not all HPLMN services will be available to the roaming users. When the 
user is served by home routed roaming scheme, Fig. 6b, the traffic is routed to the 
Home-public land mobile networks (PLMNs) by the visitor’s UPF. The UPFs in the 
home network act as gateways and communicate with the policy and billing system. 
However, as seen in Fig. 6c, realizing roaming with nCore can rectify inefficient 
traffic routing and improve user experience. Additionally, an interface is provided 
between the UDM home and visitor network. The UDM-visitor network sends a 
relocation request to the UDM-home network for a visitor UE, followed by a policy 
check where it is determined whether the user is entitled to receive roaming services. 
Considering the UE qualifies for a context information transfer, all the policy and 
control charging (PCC) information for that particular UE is copied to the visitor 
UDM. The visitor network will now be able to serve the UE by exchanging only 
four-control messages (re-location request and response, PCC information request 
and response). This method supports optimal routing and bandwidth conservation 
in contrast to the home-routed model by serving the UE from their current point of 
attachment network.



nCore: Clean Slate Next-G Mobile Core Network Architecture for Scalability. . . 19

6 Standalone Deployment of nCore and Compatibility with 
5G Physical Layer 

The proposed nCore design is agnostic to the choice of radio access technology such 
as LTE or 5G NR, enabling usage of Orthogonal Frequency Division Multiplexing 
(OFDM) for uplink and downlink, similar in spirit to 5G. The nCore architecture 
remains independent of how the spectrum resources are managed. Further, it 
assumes that mobile access will occur over a potentially diverse and heterogeneous 
range of access technologies that are potentially of unreliable/interruptible quality 
and can be addressed via delay tolerance in the core network. The proposed core 
architecture is compatible with dynamically managed spectral resources for seam-
lessly supporting varied applications. Additionally, nCore provides mix-and-match 
capabilities for opportunistically matching the type of radio access network (RAN) 
and using licensed, unlicensed, or shared spectrum to optimize the performance and 
efficiency of next-gen services. 

nCore is capable of stand-alone deployment (SA) to leverage the distributed flat 
core attribute of the proposed architecture. In the SA deployment, both the UE and 
the base station (BS) will run the nCore distributed protocol. All the routers and 
BSs have an API to communicate with the GNRS. In addition, the BS is designed to 
set up connectivity directly with the UDM to access UE related data bypassing the 
AMF. 

7 Prototype Evaluation of nCore 

A comparative prototype evaluation of nCore with 3GPP core has been carried 
out using the ORBIT and COSMOS testbeds at Rutgers WINLAB [32]. The 
nCore is implemented using Open Air Interface (OAI) [33] and USRPs on the 
ORBIT\COSMOS testbed. The UE and the BS run MobilityFirst [14] protocol. 
Routers and gNBs in the network have an API to communicate with the name 
resolution service, the GNRS. The OAI implementation at the BS is modified to 
establish an SCTP connection with a custom policy and authentication management 
entity, similar in spirit to a UDM. 

7.1 Network Layer Connection Establishment Latency 

The idle-to-connected event in the traditional core includes authentication and 
connection management latencies but excludes RRC-related MAC layer protocol 
latencies. Figure 7 shows the cumulative distribution of 50 runs of UE moving from 
idle to an active state, establishing connectivity with the BS, an average latency 
of 21.8ms is recorded for nCore. The same experiment is also executed with OAI
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Fig. 7 Network layer latency 
during connection 
establishment 
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Fig. 8 Connection establishment latency in the nCore vs. a 3GPP standardized core 

code running on UE and BS being attached to commercial software by Amarisoft to 
depict the 3GPP traditional core [34]. In this case, the average network latency goes 
up to 750ms. It has been observed that the session management control message 
exchanges and the bearer setup event between BS, AMF and the gateways add to 
the latency in the core. 

7.2 Overall Connection Establishment Latency 

Next we compare the overall connection establishment latency of nCore vs. a 
commercial network. As shown in Fig. 8, the average connection establishment 
latency (MAC protocols as well as core network protocols included) is around 49ms 
for the same OAI based prototype running on COSMOS. In order to compare it to 
the state-of-the-art, we parsed datasets obtained from MobileInsight for a US based 
cellular operator for 780 crowd-sourced UE datasets [35]. As seen from the plot, the 
average connection establishment latency for a 4G compatible commercial network 
is 181ms.
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8 Conclusion 

In this chapter, a next-generation mobile core network architecture called nCore 
is proposed that leverages the concept of Locator-ID separation protocols and dis-
tributed mapping system for looking up the mapping between end-point-identifiers 
and route locators. Designing the network core based on Locator-ID separation 
eliminates the need for specialized gateways and complex additions to existing 
control-plane protocols to support emerging 5G and beyond requirements. nCore 
enables the network to scale organically and allows operators to deploy and adapt 
as per the services required. It is shown that the proposed name-based architecture 
can support mobility quite efficiently while natively supporting various use cases 
ranging from multihoming to edge cloud computing. It supports service-centric 
networking and minimizes network related configuration for applications, allowing 
fast resolution for named service instances. Prototyping and experimental validation 
of the proposed architecture compared with state-of-the-art 5G mobile core network 
architecture in terms of throughput, latency and control overhead is ongoing and will 
be reported in our future work. 
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Acronyms 

Abbreviation Definition 

3GPP 3rd Generation Partnership Project 

SA Standalone 

MIMO Multiple-Input Multiple-Output 

LTE Long-Term Evolution 

IETF Internet Engineering Task Force 

DMM Distributed Mobility Management 

UE User Equipment 

gNB Next Generation Node B 

EID End-point Identifier 

PDN Packet data network 

SGW Serving gateway 

PGW Packet Data Network gateway 

UPF User plane function 

AMF Access and mobility management function 

SMF Session management functions 

HIP Host Identity Protocol
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Abbreviation Definition 

NDN Named Data Networking 

CDN Content Delivery Network 

GNRS Global name resolution service 

gNB Next Generation Node B 

AP Access point 

D-map Distributed mapping 

RRC Radio Resource Connection 

GUID Globally unique identifier 

NCS Name Certificate Service 

AD Autonomous Domains 

PDU Packet Data Unit 

NR New Radio 

MEC Mobile Edge Computing 

LBO Local Break Out 

PLMN Public Land Mobile Network 

UDM Unified Data Management 

PCC Policy and Control Charging 

OAI Open Air Interface 

SCTP Stream Transmission Control Protocol 
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Decision-Dominant Strategic Defense 
Against Lateral Movement for 5G 
Zero-Trust Multi-Domain Networks 

Tao Li, Yunian Pan, and Quanyan Zhu 

1 Introduction 

The U.S. military has been undergoing a doctrine transition from traditional single 
to multi-domain operations or warfare (MDW), which the Army formally approved 
in October 2022 as its new warfighting doctrine [1]. The new doctrine defines 
MDW as “the combined arms employment of joint and Army capabilities to create 
and exploit relative advantages that achieve objectives, defeat enemy forces, and 
consolidate gains on behalf of joint force commanders,” [1] which directs the 
service to combine and integrate air, land, sea, space, and cyberspace in all facets of 
operations. MDW is developed in response to the 2018 National Defense Strategy 
[2], shifting the previous focus of U.S. national security from addressing violent 
extremists worldwide to great power competition and potential conflict with near-
peer adversaries across air, land, sea, space, and cyberspace. 

One main impetus for this doctrine transition is the technological advances and 
increased complexity of modern warfare. In addition to traditional platforms such as 
main battle tanks and guided-missile destroyers, the rise of space, information, and 
artificial intelligence technologies leads to enhanced and new military capabilities, 
such as the Advanced Extremely High-Frequency Systems [3] powered by military 
satellites, the Indago quadrotor unmanned aerial systems [4], and the U.S. cyber 
force. By leveraging the strengths of various military capabilities across multiple 
domains, military forces operate through the physical dimension (air, land, sea, 
space), influence through the information dimension (cyberspace), and achieve 
victory in the human dimension. 
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Fig. 1 An illustration of 5G Multi-Domain Networks (MDN). The army force has deployed a 
robust 5G communication infrastructure to facilitate seamless communication within the base 
and between the battalion headquarters (HQ), front lines, and forward posts. Additionally, the 
integration of 5G-powered satellites enables effective communication between aerial vehicles and 
ground forces. An APT attack can start with initial access (1), create lateral movement (2), and 
eventually command and control the targeted assets (3). Several paths of the attack chain are 
depicted, leading to the consequence of the compromise of a helicopter or misdirection to satellites 

MDW involves seamless coordination and integration of forces and assets across 
domains to gain a competitive advantage over adversaries. For example, ground 
forces may work in conjunction with air and space assets to gain situational 
awareness, conduct precision strikes, and provide close air support. Meanwhile, 
naval forces may coordinate with cyberspace capabilities to disrupt an adversary’s 
communication networks and gain information superiority. The fifth-generation 
(5G) wireless technology plays an important role in MDW because it provides a 
network infrastructure that enables faster data transfer, greater bandwidth, lower 
latency, and increased capacity compared to its predecessors. With 5G networks, 
military units across multiple domains can access and share information in real time, 
creating a synergistic effect that improves situational awareness and enhances com-
mand and control. Furthermore, 5G connectivity can facilitate the communication 
and control of unmanned and autonomous systems powered by artificial intelligence 
both on the ground and in the air, enabling the integration of unmanned assets into 
MDW. A schematic illustration of 5G networks in MDW is presented in Fig. 1 

Recent years have seen the adoption and implementation of 5G networks for 
military applications gaining momentum. The advanced features of 5G networks, 
despite their contributions to coordinated MDW operations, introduce security 
challenges periling the efficiency and effectiveness of MDW. For example, with 
more devices and sensors connected to the network system, 5G networks present 
a larger attack surface, e.g., more potential entry points for attackers to exploit, 
compared to previous generations. Meanwhile, as 5G networks provide faster and 
more reliable connectivity, they enable more sophisticated cyberattacks, such as 
large-scale distributed denial-of-service attacks [5], network slicing exploitation [6], 
and edge computing compromise [7].
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Among these cyberattacks, one critical threat is the Advanced Persistent Threat 
(APT). APT attacks are typically carried out by skilled and well-funded attackers 
who use sophisticated techniques to gain unauthorized access to sensitive informa-
tion and systems. APT attackers may conduct extensive network reconnaissance 
to gather information about the 5G network and its vulnerabilities. They exploit 
vulnerabilities in the 5G network and gain unauthorized access to a device or 
system within the network to move laterally through the network and access other 
devices or systems within it. In 5G networks, lateral movement capabilities can be 
particularly dangerous, as they can allow attackers to gain access to critical systems 
and data within the network. For example, an attacker who gains access to a single 
device within a 5G network could potentially use lateral movement techniques to 
access other devices or systems, such as servers or databases containing sensitive or 
confidential data. 

Since military assets and systems across various domains are connected and 
rely on 5G networks to exchange information and coordinate operations, the 
vulnerability of 5G networks can pose significant challenges in MDW. Therefore, 
military organizations shall prioritize the security of 5G networks in MDW and 
establish a proactive cyber defense in 5G networks. The primary objective of such a 
cyber defense is to disrupt the attacker’s kill chain, which includes the following 
stages: reconnaissance, privilege escalation, exploitation, lateral movement, and 
command and control. Starting from an entry point, the attacker gains initial 
access to the network, conducts reconnaissance, stealthily navigates within the 5G 
infrastructure, and ultimately compromises the targeted asset, such as a drone or a 
satellite. Such adversarial behaviors are increasingly common in APTs. 

To counteract the attacker’s actions, the defender employs a sequence of 
defense actions known as the cyber defense chain, including monitoring, detection, 
response, and attribution. Figure 2 summarizes the kill and the defense chains. The 
relationship between the kill and the defense chains is competitive in nature. The kill 
chain aims to evade the detection from the cyber chain to reach the target, while the 
defense chain aims to thwart the attack before an adversary carries out the planned 
attack. To outmaneuver the adversary’s decision-making cycle, a defender needs 
superior situational awareness together with fast and reliable reasoning capabilities, 
especially in unknown and uncertain situations, to make timely and effective 
decisions. These desiderata are also known as decision dominance. Illustrated in 
Fig. 2, a decision-dominant defense at the monitoring and detection stage has the 
capability of gathering, processing, and analyzing information from various sources 
to obtain a comprehensive understanding of the cyber operational environment. 
At the response stage, a decision-dominant defense can quickly evaluate available 
options, assess risks, and make informed decisions in a timely manner. As a result, 
it thwarts the planned attack before its execution. To achieve decision dominance, 
there is a need for proactive cyber mechanisms, such as cyber deception and attack 
engagement, to gather immediate intelligence. In addition, agility is indispensable. 
It allows the defender to learn, adapt, and respond to changing situations, seize 
opportunities, and effectively adjust strategies and tactics as required. Strategic 
thinking is paramount to achieving agility, involving the study of adversarial
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Fig. 2 An illustration of cyber kill/defense chains. The kill chain consists of crucial stages such 
as reconnaissance, planning, execution, and exploration. The objective of defense measures is to 
disrupt this kill chain by employing monitoring, detection, response, and attribution techniques. 
An effective defense strategy is considered decision-dominant when it efficiently acquires and 
processes information, enabling it to make timely decisions that outpace the attacker. For instance, 
the defense chain can respond swiftly to thwart the attack even before the attacker initiates the 
planned offensive actions 

behaviors, the development of adaptive tactics, and the ability to make informed 
and decisive decisions. 

There is a pressing need for the development of a systematic approach to 
establishing decision-dominant mechanisms for the defense of 5G networks. Game 
theory offers a promising solution in this regard. Not only does game theory 
naturally provide a framework for designing tactics in competitive environments, but 
recent advancements in dynamic games, learning theory, and their intersection with 
modern machine learning techniques enhance the reasoning capabilities of agents. 
This enables a formal and agile approach to achieving rapid decision-making. For 
instance, recent studies [8–11] have introduced a class of dynamic games that 
effectively capture the evolving interactions between defense and kill chains. The 
concept of non-equilibrium has been proposed to derive solution concepts based 
on players’ behaviors. This concept holds significant implications for cybersecurity 
applications, particularly when the interactions between attackers and defenders 
may be limited and indirect. 

Another significant advantage of utilizing game-theoretic models is their strong 
epistemic foundation, which allows for explicit modeling and analysis of scenarios 
involving information asymmetry and the pace of decision-making. These models 
find wide applicability in 5G security networks. Information asymmetry arises 
from the fact that neither party possesses a comprehensive view of the entire 5G 
network. Instead, each party gathers partial observations through reconnaissance 
(the attacker) or monitoring (the defender). To effectively outmaneuver the adver-
sary, the defender must establish an information advantage by actively acquiring 
information during the monitoring process. This proactive approach enables the 
defender to gain high-confidence situational awareness of the network system and 
adversarial behaviors. However, it is important to note that having an information 
advantage alone does not necessarily guarantee the defender an upper hand in cyber 
defense. Another crucial aspect that holds equal importance is the pace of decision-
making. The defender faces a disadvantage if the attacker manages to execute the
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attack successfully before an adequate response can be mounted. In this regard, 
game theory frameworks provide a means to comprehensively capture the end-
to-end decision-making process, encompassing information acquisition, learning, 
and decision-making. It provides a theoretical underpinning for understanding the 
fundamental tradeoff among these factors and a holistic approach to modeling and 
devising tactics across all stages. 

One implicit assumption underlying the defense against APTs is that the attacker 
possesses the necessary capabilities to acquire initial access and credentials, and 
then establish a foothold within the network. We cannot stop the attack from getting 
into the network. This assumption forms the basis of the zero-trust security doctrine, 
which emphasizes the need to trust no entity by default and requires organizations 
to verify and authenticate all users, devices, and activities, regardless of their 
location or origin. Recognizing the importance of assuming a reasonable capability 
of adversaries in developing effective defenses, the concept of zero-trust doctrine 
can also be integrated into game models by establishing relevant adversarial models. 
By incorporating the principles of zero trust, game models can create decision-
dominant zero-trust policies to defend against APTs in 5G networks. 

To this end, we propose a decision-dominant zero-trust defense (DD-ZTD) 
against adversarial attacks in 5G networks in MDW to strike the right balance 
between information acquisition and fast decision-making. DD-ZTD is built on 
a game-theoretic framework that captures the information asymmetry and the 
competitive nature of cyber defense. Following the “never trust, always verify” 
principle [12], zero-trust defense (ZTD) equips the defender with a proactive 
information processing mechanism when operating with incomplete information 
about the attacker’s intentions, capabilities, and actions, which is crucial to develop 
strategies that account for the information asymmetry. 

The ZTD problem of the 5G network is modeled as an asymmetric information 
Markov game (AIMG) between the defender and the attacker. Thanks to its great 
expressivity, AIMG offers a comprehensive characterization of various information 
structures in cyber defense, which facilitates defense design in various security con-
texts. Furthermore, the equilibrium notion in AIMG lays a theoretical underpinning 
of an adaptive ZTD in the presence of information asymmetry. Powered by recent 
advancements in machine learning, the proposed game-theoretic ZTD framework 
exhibits great potential in devising a generalizable intelligent defense against a wide 
range of cyber attacks arising from a variety of network systems possibly unknown 
to the defender beforehand. 

To outpace the attacker in the cyber kill chain, ZTD is further augmented by deci-
sion dominance (DD), where DD accelerates the defense decision-making in ZTD. 
As its name suggests, DD makes the defender the dominant player in the dynamic 
game by taking decisive actions based on acquired partial information with high 
confidence before the attacker compromises the network system, sharing the same 
spirit of the motto “first look, first shot, first kill” [13]. Such strategic dominance is 
achieved by game-theoretic calculations where the defender takes into account the 
attacker’s decision-making process. DD amounts to an optimal stopping (Dynkin’s) 
game problem, which essentially captures the defender’s strategic anticipation of
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the opponent’s stopping criterion, as well as the fundamental tradeoff between the 
benefits and harm of lingering in the interaction, which is ubiquitous in the cyber 
security domain. The equilibrium notion for DD enables the defender to make 
opponent-independent stopping decisions based on the payoff evaluation for the 
underlying cyber kill chain process while making the monitoring and investigation 
as effective as possible. 

The rest of this chapter is organized as follows. Section 2 provides an overview 
of multi-domain warfare and associated 5G networks across multiple domains, 
laying the context for further discussions. Section 3 articulates the emerging security 
challenges in 5G networks, particularly the advanced persistent threats (APT). To 
address these security issues, we propose a decision-dominant zero-trust defense for 
5G networks in Sect. 4, where the game-theoretic conceptualization is presented. 
Sections 5 and 6 dive into the details of the zero-trust defense and the decision-
dominance concept in detail, respectively, where case studies of the proposed 
DD-ZTD are presented. 

2 Multi-Domain Warfare and 5G Networks 

This section briefly overviews multi-domain warfare and the associated 5G commu-
nication networks. 

2.1 Multi-Domain Warfare 

Multi-domain warfare (MDW), a new operation concept designated by the U.S. 
Army [14], refers to the combined arms employment of military capabilities 
straddling multiple domains to create and exploit a decisive advantage over an 
adversary. Unlike traditional warfare, where operations are conducted within a 
single domain, MDW rests on synthesizing various military capabilities across five 
warfighting domains: land, sea, air, space, and cyberspace. 

The backbone of MDW is the coordination and integration among different 
military units from multiple domains, leading to joint operations where various 
military services, such as the army, navy, air force, and space force, work together 
collaboratively. By operating across multiple domains, military forces can disrupt 
an adversary’s operations and degrade their ability to fight. 

2.2 5G Multi-Domain Networks 

One challenge to achieving real-time coordination and integration in multi-domain 
warfare is the lack of network infrastructure to support interoperability among
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military units using different communication systems, making coordinating actions 
across multiple domains difficult. The fifth generation (5G) wireless communication 
technology plays a vital role in multi-domain warfare. It provides a network infras-
tructure that enables faster data transfer speeds, greater bandwidth, lower latency, 
and increased capacity and reliability than previous generations of mobile networks. 
Thanks to its advanced features, 5G technology provides the foundation for faster, 
more connected, and more capable military operations across multiple domains, 
leading to improved situational awareness, enhanced command and control, precise 
targeting, integration of unmanned systems, and support for emerging technologies 
like the internet of battlefield things(IoBT). We elaborate on these aspects in the 
ensuing paragraphs. Figure 1 presents a schematic illustration. 

Situational Awareness 5G MDN can support the transmission of large volumes of 
data in real time. This enables the rapid exchange of information between sensors, 
platforms, and command centers across different domains. Improved situational 
awareness allows military commanders to make more informed decisions and 
respond promptly to changing battlefield conditions. 

Precise Targeting The low latency and high bandwidth of 5G networks enable 
the real-time transmission of sensor data and imagery, supporting the precise 
targeting of enemy assets. This enhances the effectiveness of kinetic operations, 
such as precision strikes, and improves the accuracy of intelligence, surveillance, 
and reconnaissance (ISR) capabilities. 

Command and Control 5G networks can facilitate seamless communication and 
coordination between military units and commanders across domains. Reliable 
and low-latency connectivity enables the transmission of commands, orders, and 
mission-critical data, enhancing command and control capabilities in multi-domain 
operations. 

Integration of Unmanned Systems and IoBT 5G connectivity can facilitate the 
communication and control of unmanned systems and autonomous vehicles, both 
on the ground and in the air. This enables the integration of unmanned assets into 
multi-domain operations, enhancing their situational awareness, coordination, and 
responsiveness. In addition, 5G connections among a massive number of devices 
and sensors can be leveraged to create a comprehensive network of interconnected 
assets. This integration allows for better monitoring, management, and control of 
unmanned systems, autonomous vehicles, and other IoT devices across domains. 

3 Emerging Security Challenges in 5G Multi-Domain 
Networks 

5G networks represent a significant advancement in technology, offering function-
alities that set them apart from previous generations. In the context of multi-domain 
warfare, it is crucial to examine the vulnerabilities inherent in 5G networks, as
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they can be exploited to form an APT kill chain. This section will delve into the 
vulnerabilities stemming from APIs, network slicing, and the supply chain. 

3.1 Security of 5G Multi-Domain Networks 

5G networks play an important role in MDW as they provide a network infras-
tructure that enables faster communication, greater bandwidth, and lower latency 
between different military units compared to previous generations of mobile 
networks. With 5G technology, military personnel can access and share information 
in real-time, allowing for faster decision-making and more efficient deployment 
of resources. For example, a military unit is conducting a mission in an urban 
environment that involves ground troops, drones, and surveillance equipment. The 
troops on the ground need to communicate with each other in real time while also 
receiving information from the drones and surveillance equipment to coordinate 
their actions. 

Moreover, 5G technology allows for the use of advanced technologies such 
as drones, autonomous vehicles, and augmented reality, which can be used to 
gather intelligence, conduct surveillance, and engage in combat operations. These 
technologies rely on high-speed, low-latency networks to function effectively, and 
5G provides the necessary infrastructure to support their deployment. For example, 
during the U.S. military’s operations in Afghanistan, the 5G-satellite communica-
tion network was used to provide real-time communication and intelligence sharing 
between ground forces, aircraft, and command centers. The system enabled military 
forces to coordinate their actions across different domains while also providing them 
with the information and intelligence needed to make informed decisions. 

In addition to its communication capabilities, 5G-supported satellite networks 
also have the ability to support other mission-critical functions, such as intelligence 
gathering and surveillance. The system’s high-capacity communication services 
and advanced technology make it a critical enabler for multi-domain warfare, 
providing military forces with the network infrastructure needed to support real-
time communication and information sharing across different domains. 

The adoption and implementation of 5G networks for military applications are 
gaining momentum in recent years. As military forces become more reliant on 5G 
networks, they also become more vulnerable to cyber-attacks. To achieve multi-
domain warfare, military forces need to develop robust cybersecurity measures to 
protect their 5G networks and systems from cyber threats. One critical threat is 
APT attacks on 5G networks. APT attacks are typically carried out by skilled and 
well-funded attackers who use sophisticated techniques to gain unauthorized access 
to sensitive information and systems. APT attackers may conduct extensive network 
reconnaissance to gather information about the 5G network and its vulnerabilities. 
They exploit vulnerabilities in the 5G network and gain unauthorized access to 
a device or system within the network to move laterally through the network 
and access other devices or systems within it. In 5G networks, lateral movement
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capabilities can be particularly dangerous, as they can allow attackers to gain access 
to critical systems and data within the network. For example, an attacker who gains 
access to a single device within a 5G network could potentially use lateral movement 
techniques to gain access to other devices or systems, such as servers or databases, 
which contain sensitive or confidential data. 

3.2 5G Threat Landscape: Vulnerabilities and Kill Chain 

The emergence of 5G technology represents a significant departure from previous 
mobile generations, bringing with it a distinct set of security requirements. This is 
particularly crucial for military users who often necessitate tailored and specialized 
services to address their unique operational needs. There are several key threats 
associated with 5G networks beyond general cybersecurity threats (e.g., unautho-
rized access, human errors, and misconfigurations). Various threat frameworks are 
available to aid in analyzing these threats, such as those provided by MITRE Fight 
and 3GPP’s Security Assurance Specifications (SCAS) and Technical Specification 
(TS) 33.501. 

One prominent threat to 5G networks is virtualization threats, which impact 
virtual machine (VM) and container service platforms, affecting various aspects of 
5G, including the Core, RAN, MEC, Network Slicing, Virtualization, and Orches-
tration and Management. These threats encompass DoS attacks, VM/container 
escape, side-channel attacks, and misconfigurations by cloud service consumers. For 
instance, extreme resource consumption by one tenant in a multi-tenant virtualiza-
tion environment can lead to a DoS event for neighboring tenant systems, impeding 
mission functionality. Similarly, colocation attacks, such as VM/container escape 
or side-channel attacks, can compromise neighboring compute workloads, resulting 
in resource deprivation, lateral movement, and compromising data confidentiality, 
integrity, or availability. A side-channel attack on 5G RAN or Core functions could 
allow bypassing user account permissions, virtualization boundaries, or protected 
memory regions, thereby exposing sensitive information. 

One type of threats is on 5G network slices. These threats may exploit weak-
nesses in the network slice’s configuration, protocols, or applications, potentially 
leading to unauthorized access, data breaches, or service disruptions within that 
particular slice. To combat this threat, slice isolation is a promising approach. It 
involves creating and maintaining separate virtual network slices within the 5G 
infrastructure. By isolating slices, potential interference or vulnerabilities in one 
slice are contained, ensuring the integrity and security of other slices. 

As 5G networks utilize application programming interfaces (APIs) for commu-
nication and interaction between different components, several potential threats can 
arise. These include DoS attacks targeting 5G APIs by overloading them with a high 
volume of requests or exploiting API vulnerabilities to exhaust system resources. 
Attackers can also exploit API vulnerabilities by abusing or misusing them to gain 
unauthorized access, manipulate data, or disrupt services. This can involve sending
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Fig. 3 An illustration of 5G network consisting of access network and core network as two major 
components. The core network has the functionalities of control plane and user plane separation, 
network functions virtualization (NFV), network slicing, mobility management, and multi-access 
Edge Computing (MEC) 

malicious API requests, performing injection attacks, or overwhelming the API with 
excessive requests (API flooding). 

The increasing complexity of 5G networks involves a vast ecosystem of suppliers 
and vendors. Security vulnerabilities in the supply chain can lead to compromised 
components or malicious software being introduced into the network infrastructure, 
posing significant risks. For example, the presence of counterfeit or substandard 
components in the 5G supply chain poses significant risks to network security 
and integrity. These components may not meet the required quality standards or 
security specifications, making them susceptible to exploitation and compromise. 
Unauthorized actors could exploit these vulnerabilities to gain unauthorized access 
or control over the network infrastructure, potentially leading to data breaches, 
service disruptions, or unauthorized surveillance. 

In addition to counterfeit components, there is a risk of introducing malicious 
software or hardware into the 5G supply chain. This can occur through intentional 
modifications or the inclusion of backdoors that provide unauthorized access 
points. Threat actors can exploit these vulnerabilities to infiltrate the network 
infrastructure, compromise the confidentiality, integrity, and availability of data, or 
gain unauthorized control over critical network functions. 

Supply chain security risks can also originate from third-party providers involved 
in the network deployment, such as installation contractors or maintenance service 
providers. Inadequate security measures implemented by these third parties, insider 
threats, or the compromise of their systems can introduce vulnerabilities into the 5G 
network. Weaknesses in the security practices of these entities can be exploited by 
threat actors, compromising the overall security of the network. 

The combination of vulnerabilities in API, supply chain, and network slicing, 
along with others, can be exploited by an Advanced Persistent Threat (APT) attack 
to form a comprehensive kill chain. Figure 3 provides a visual representation of 
a baseline 5G network, where UEs utilizing O-RAN technology connect to the 
5G core networks. This interconnected infrastructure presents an attack surface 
that an adversary can leverage to target specific entities. By capitalizing on the 
identified vulnerabilities, an attacker can exploit weaknesses in the API layer, 
infiltrate compromised components introduced through the supply chain, and exploit
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insufficient isolation or monitoring within the network slicing architecture. This 
enables the attacker to establish a persistent presence within the network and 
navigate through various stages of the kill chain to reach their intended target. 
Figure 1 has illustrated the potential attack path an adversary may take, highlighting 
the entry points, lateral movement, and potential impact on the 5G network. 
Understanding and visualizing this attack surface assists in identifying critical areas 
for security enhancements and mitigations. 

Zero-trust policies can be implemented to counteract such threats. It aims to 
establish clear rules and guidelines for access, authentication, and data protection 
within the network. These policies define which individuals or entities have access 
to specific resources, under what conditions, and the level of authorization required. 
It is crucial for the policy to align with the organization’s security objectives and 
regulatory requirements. Regular monitoring of network traffic, user behavior, and 
access logs is essential to promptly identify any anomalies or potential security 
breaches. Additionally, it is important to periodically review and update the Zero 
Trust policy to adapt to evolving threats and changes in the network environment. 

4 Decision-Dominant Zero-Trust Defense: A 
Game-Theoretic Framework 

This section presents a high-level overview of the proposed decision-dominant zero-
trust defense (DD-ZTD) in 5G multi-domain networks, arguing that the proposed 
game-theoretic framework leads to a unified framework for cyber defense in 5G 
networks. 

4.1 Decision Dominance 

Decision dominance refers to the ability of a defender to outmaneuver the adver-
sary’s decision-making cycle by possessing superior situational awareness and 
efficient reasoning capabilities. It involves making timely and effective decisions, 
particularly in unknown and uncertain situations, in order to gain an advantage 
over the attacker. To achieve decision dominance, a defense strategy needs to 
excel in two stages: monitoring and detection and response. In the monitoring 
and detection stage, a decision-dominant defense can gather, process, and analyze 
information from various sources to obtain a comprehensive understanding of the 
cyber operational environment. This enables the defender to proactively identify 
and assess potential threats. In the response stage, a decision-dominant defense can 
swiftly evaluate available options, assess risks, and make informed decisions in a 
timely manner. By doing so, it can effectively thwart planned attacks before they are 
executed. Achieving decision dominance requires proactive cyber mechanisms like 
cyber deception and attack engagement to gather immediate intelligence. Agility
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is also crucial, allowing the defender to learn, adapt, and respond to changing 
situations, seize opportunities, and adjust strategies and tactics as necessary. 

Zero-trust decision-dominance strategies refer to a specific type of decision-
dominance strategy that operates on the assumption of the presence of adversaries at 
all times. These strategies are particularly critical for securing 5G networks, given 
the expanding attack surface and the significant number of IoT devices deployed in 
battlefield environments. Implementing these strategies requires strategic thinking 
and continuous monitoring of device behaviors to assess their trustworthiness. 
Timely evaluation and rapid response capabilities are essential in terms of network 
configuration and access control policies to counteract adversaries before they 
can execute their planned attacks. To ensure effective implementation, it is nec-
essary to establish quantitative and formal frameworks that incorporate zero-trust 
decision-dominance into 5G network security policies. These frameworks provide a 
structured approach to design and enforce robust security measures that align with 
the principles of zero trust, enhancing the overall resilience and protection of 5G 
networks in dynamic threat environments. 

4.2 Conceptualization of Decision-Dominant Zero-Trust 
Defense 

One of the primary objectives of this book chapter is to develop a quantitative 
framework that formalizes the decision-making process for zero-trust defense. The 
inherent competition between attackers and defenders naturally gives rise to a 
dynamic game environment that reflects the win-lose nature of multi-stage interac-
tions. To account for the information asymmetry between the players resulting from 
differences in monitoring and sensing capabilities, we propose a dynamic game of 
asymmetric information. In this game, players utilize the information available to 
them through the established information structure to infer unknowns. Variations in 
the information structure lead to differing belief structures. Players make decisions 
based on their beliefs, resulting in new observations in subsequent rounds of 
interaction and the formation of updated beliefs. It is evident that there exists 
interdependence between the beliefs and actions arising from the players’ chosen 
strategies. The solution concept for the game necessitates consistency between the 
agents’ beliefs and their optimal effort strategies. This concept gives rise to the 
notion of Bayesian Nash equilibrium, which serves as the foundation for developing 
algorithms to implement game-theoretic solutions in practical scenarios. 

It is important to note that belief formation stems from incomplete information 
regarding the other agent. In our case, the incomplete information pertains to the 
behavior of the other player. Thus, it can also be seen as a process of establishing 
trust in the other player. This naturally aligns with the concept of zero trust, which 
requires the defender to distrust users or third-party players in the network despite 
their credentials. At the outset, the true identity must be considered unknown 
and untrusted, and the evaluation of a player’s trustworthiness epitomizes the
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principle of zero trust. The baseline equilibrium concept is established using 
Bayesian rationality, where Bayes’ law is employed to update beliefs whenever new 
observations are obtained by the players. In practice, this baseline can be replaced 
with a machine-learning approach for inference. In modern scenarios, vast amounts 
of data are collected from numerous users interacting with the system. These data 
can be incorporated into game-theoretic models, facilitating the practical application 
of equilibrium solution concepts. Detailed models and their applications to lateral 
movements will be discussed in the subsequent section. 

In order to accommodate the requirement of quick decision-making in decision-
dominant scenarios, the game becomes dynamic and no longer has a fixed horizon. 
In this type of game, known as a stopping time game, players have the ability 
to choose when to cease observations and make their decision. The advantage of 
stopping early lies in determining the payoffs, but there is a risk of uncertainties that 
may lead to higher payoffs if the decision is postponed. However, it is important 
to note that the other player also has the capability to terminate the game. If 
the attacker terminates the game prematurely, the defender would be in a passive 
position. Thus, the competitive nature of the game naturally leads to a decision-
dominant scenario. The defender’s reasoning involves inferring the opponent’s 
strategies based on the observations and, in the meantime, trades off between the 
probable stopping by the attacker as well as the low payoff as a result of early 
stopping. To formally capture this dynamic, we introduce a stopping-time game 
in the ensuing section, with the aim of creating decision-dominant strategies. The 
associated Nash equilibrium solution concept allows us to reason formally about 
the active and passive situations of the defender, referred to as defender dominance 
and adversary dominance, respectively. The baseline analysis provides insights into 
the necessary structures for developing winning solutions, including the payoff 
structures, information structures, and inference mechanisms. This analysis also 
establishes a theoretical foundation for understanding the fundamental limits of 
strategic decision dominance in the face of a strategic adversary. By integrating 
decision-dominant strategies with zero-trust defense strategies within the baseline 
framework, we can establish a symbiotic relationship between the two. Additionally, 
the consolidation and integration of data analytics can pave the way for the 
development of practical algorithms in the future. 

The proposed framework in this book chapter is solidly built on the recent 
development of game-theoretic models for cybersecurity. Recent advances have 
witnessed the growth in their application to assess security risks, design protection 
mechanisms, and inform policy making for communication networks [15–17], 
Internet of things [18–20], power and energy systems [21–24], manufacturing 
and robotics [25–28], supply chains [29–31], and transportation networks [32–34]. 
Game theory has also provided theoretical foundations for cyber deception [35–38], 
moving target defense [39, 40], and human behaviors [5, 41, 42]. Both decision-
dominance and zero-trust defense possess distinct characteristics that necessitate 
specific game structures to capture their essential features and provide valuable 
insights. In this context, our focus lies on two types of game structures: the game 
of asymmetric information and stopping time games. This chapter not only applies
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these game structures to 5G zero-trust security problems but also contributes to a 
novel class of game-theoretic frameworks, pushing the boundaries of game theory 
forward. 

Our contribution primarily revolves around the creation and analysis of stopping-
time games within the framework of asymmetric information dynamic games. 
By incorporating asymmetric information into these games, we introduce a new 
dimension that enhances our understanding of strategic interactions. Furthermore, 
we consolidate the fields of meta-learning and explainable learning within the 
domain of asymmetric information games, fostering a comprehensive approach 
to game analysis. Through these contributions, we aim to extend the frontiers of 
game theory, providing researchers and practitioners with valuable tools to tackle 
decision-dominance and zero-trust defense challenges effectively. 

5 Zero-Trust Defense 

With a growing threat landscape and attack surfaces in 5G networks, traditional 
perimeter-based defense, a static defense mechanism, has become inadequate in 
the face of sophisticated cyber attacks, such as APTs. Advanced attackers can 
evade traditional intrusion detection at the perimeter, obtain privileges as insiders 
with stolen credentials, and move laterally within the network. In response to the 
vulnerabilities in the static defense, zero trust emerges as a promising security 
framework, assuming that no entities can be trusted and therefore requiring veri-
fication processes for every incoming access request [12]. 

Zero-trust defense (ZTD) consists of two components: trust evaluation and access 
policy. Square one of ZTD is to quantitatively establish the trustworthiness of each 
entity in the network, which is highly nontrivial in 5G networks with large-scale 
heterogeneous network entities. Due to the increasing network connectivity, the 
defender can only acquire limited partial observations of the user’s trace through 
methods such as Intrusion Detection Systems [43], and Security Information and 
Event Management [44]. These limited observations create information asym-
metry, complicating the defender’s decision-making, and a quantitative metric 
measuring the user’s trustworthiness using partial observations is indispensable. 

With the trust evaluation, the defender can enforce different policies for access 
to network resources. What distinguishes ZTD from the perimeter-based one is that 
the trust evaluation and the access policy, together with the network monitoring 
unit, constitute a feedback loop shown in Fig. 4. As new observations are fed into 
the evaluation unit, the defender adjusts the trust and the access policy accordingly, 
leading to a dynamic defense. This section articulates a game-theoretic framework 
(see Definition 1) for ZTD design in 5G networks, which offers a natural set of tools 
to capture the information asymmetry and the competitive nature of the two parties 
in dynamic environments. 

The proposed game-theoretic framework provides a theoretical underpinning of 
adaptive and strategic ZTD built upon the notion of perfect Bayesian Nash equi-
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Fig. 4 An illustration of the feedback loop in zero-trust defense (ZTD) architecture. Unlike 
the perimeter-based defense, ZTD dynamically evaluates the trustworthiness of the user using 
feedback from the security monitoring system, such as SIEM [44]. Based on the trust evaluation, 
the access policy either grants or denies access 

librium (see Definition 7) in the face of asymmetric information. This equilibrium-
based ZTD can be further augmented with modern machine-learning (ML) method-
ologies providing an end-to-end automated network defense (see Sect. 5.3), gen-
eralizing to adversarial scenarios unseen in the pre-training stage. As advanced 
ML machinery enters the picture, the ZTD architecture grows opaque to human 
operators. To make ML-based ZTD itself trustworthy to humans, it is necessary 
to increase the explainability and accountability of learning-based ZTD, which is 
discussed at the end of this section. 

5.1 Information Asymmetry in Zero-Trust Defense 

As a prevailing phenomenon in security applications [45], information asymmetry 
refers to the fact that one party is better informed than the other party at the point 
of decision-making. To facilitate our discussion, we use the notion information 
structure [45] to capture the player’s observations and knowledge throughout the 
decision-making process, which is mathematically a set of random variables whose 
realizations can be observed by the player [45]. We first present a bird’s eye view 
of asymmetric information structures in the cyber defense of 5G networks, and 
mathematical definitions and arguments are deferred to Definition 1 and the ensuing 
remarks. 

Compared to its predecessors, 5G networks enjoy increasing capacity and relia-
bility that can support a massive number of heterogeneous devices. Consequently, 
it becomes prohibitive, if not impossible, for either the defender or the attacker 
to acquire a holistic view of the underlying network. The resulting information 
structures of both parties’ partial observations display complexities to various
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extents, which can be categorized according to different taxonomies. We here 
present two taxonomies based on the notion of information superiority proposed 
in [45]: one player is said to be informationally superior to the other if its 
information structure is a superset of its counterpart. 

Depending on which party acquires the information superiority, information 
asymmetry includes one-sided and double-sided information asymmetry. One-
sided information asymmetry refers to a situation where one party achieves 
information superiority over the other. If no one is informationally superior, then 
the resulting situation is of double-sided information asymmetry, where both parties 
acquire private information hidden from the other [46]. 

Depending on whether the information superiority is rooted in the knowledge 
or the observation, information structures can be categorized into incomplete and 
imperfect information structures. Knowledge is endogenous, reflecting the player’s 
comprehension of the decision-making process. The incomplete information points 
to the player’s uncertainty regarding the other’s decision-making capabilities and 
incentives. In contrast, observation is exogenous, referring to the player’s awareness 
of events that have previously occurred. Imperfect information refers to the situation 
where the player is unaware of some events in the decision-making. 

As one shall see later in the running example in Sect. 5.2, the aforementioned 
information structures are prevalent in network defense. To systematically investi-
gate information asymmetry in the cyber defense of 5G networks, we propose the 
asymmetric information dynamic games in the following, laying a mathematical 
foundation to facilitate ZTD design under sophisticated information structures, 
which is visualized in Fig. 5. 

Definition 1 (Asymmetric-Information Markov Game) An asymmetric-
information Markov game (AIMG) . G is given by the following tuple 

. G := 〈N,Ω, ρ,S, (Oi )i∈N, (Ai )i∈N, P , (ui)i∈N, (σi)i∈N, (Ii)i∈N,H 〉,

where the definition of each component within the tuple is as below. It is assumed 
every set is discrete and finite. Let .t ∈ N+ be the time index. 

• .N = {D,A} is the decision-maker (player) set, including the defender and the 
attacker, denoted by D and A, respectively. For simplicity, we consider a single 
attacker within the network, and the generalization to the case where multiple 
attackers coexist is straightforward. 

• . Ω is the attacker’s type space, and its typical element . ω indicates its attack 
capability (e.g., stealthiness) and objective (e.g., data breach). To simplify the 
exposition, the normal user is also treated as one type of attacker without 
malicious intentions or attack capabilities. 

• . ρ is the type distribution over . Ω, and .ρ(ω) implies the probability of a certain 
attacker . ω appearing in the network. 

• . S denotes the state space with its typical element s representing the operation 
status of the network.
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Fig. 5 An illustration of asymmetric information dynamic games defined in Definition 1. Let  D 
and A denote the defender and the attacker, respectively. Under asymmetric information structures 
. I t
D and . I t

A, the two players have disparate partial observations, denoted by .o
t
D, ot

A on the system 
operation . st . In zero-trust defense, the defender must infer the attacker’s intention, assign trust 
scores, and determine the access policy based on its limited observations, which calls for efficient 
and adaptive trust evaluation and policy learning 

• . Oi denotes the observation space, and its typical element . oi represents the player 
i’s partial observation. 

• . Ai is the action space of the player i. 
• .P : S× (Ai )i∈N×Ω → Δ(S) is the state transition function, depicting how the 

network operation evolves under the joint force of the defense and attack. To be 
specific, .P(st+1|st , at

D, at
A, ω) gives the probability that .st+1 emerges after the 

two players execute . at
D and . at

A at the state . st . 
• .ui : S× (Ai )i∈N × Ω → R is the instantaneous cost of the player i. 
• .σi : S × (Ai )i∈N × Ω → Δ(Oi ) is the observation function, and 

.σi(o
t
i |st , at

D, at
A, ω) denotes the probability of observing . ot

i when the underlying 
state is . st . 

• . Ii is a set-valued mapping, characterizing the information structure of the player i 
throughout the Markov game. Let .Ht := {ω, [sk(ak

i o
k
i )i∈N]t−1

k=1s
t } be the history 

of the gameplay up to time t , then .It
i := Ii(Ht ) ⊂ Ht presents the player’s 

partial observation of the play.
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• H is a constant, denoting the horizon length of the game, i.e., the operating 
lifetime of the network. 

The AIMG unfolds as follows. In the first stage, a type-. ω attacker is realized 
according to the distribution . ρ, and the network state . s1 is initialized. At the time t , 
each player implements an action . at

i from the action set . Ai based on the information 
structure . It

i . Then, the state evolves to .s
t+1. This procedure repeats until the game 

reaches the end of the horizon. The goal of type-. ω attacker is to find a policy 
.πA : It

A → Δ(AA) within a specified policy class .ΠA such that the cumulative 
cost is minimized: 

. min
πA∈ΠA

E

[
H∑

t=1

uA(st , at
D, at

A, ω)

]
, (1) 

where the expectation is taken over Borel probability measures in AIMG, including 
the transition P , the observation functions .(σi)i∈N, and the policies .(πi)i∈N. 

The defender’s objective is more involved than (1) due to the lack of information 
on the attack type, and a generic characterization is given by (2), where the notations 
are in a similar vein of (1), except that the inner expectation .Eω∼T(·) is taken over 
the hidden type . ω with respect to the defender’s subjective belief .bt ∈ Δ(Ω) based 
on the observations . It

D . Such a belief constitutes the defender’s trust evaluation of 
the user, and a mathematical characterization is presented in Definition 2. 

. min
πD∈ΠD

E

{
H∑

t=1

Eω∼bt [uD(st , at
D, at

A, ω)]
}

. (2) 

Definition 2 (Trust and Trust Engine) The trustworthiness of the user at time 
t is defined as a probability measure over the type space .bt ∈ Δ(Ω), which is 
determined by the defender’s trust engine . Ф that maps the information structure . It

i

to the trustworthiness .bt = Ф(It
i ). The set of beliefs .{bt }Ht=1 ∈ Δ(Ω)H is referred 

to as the trust evaluation. 

The trust metric b we consider is a probability measure, and .b(ω) depicts 
the defender’s subjective belief over the hidden type . ω, also referred to as the 
trust score [47]. With the trust evaluation, the defender can determine the access 
policy .πD(It

i , b
t ) based on its observation, which, together with the trust engine, 

constitutes a zero-trust defense mechanism. A mathematical definition is given 
below. 

Definition 3 (Zero-Trust Defense) The zero-trust defense is defined as a pair of 
the trust engine .Ф : ∪H

t=1{It
i} → Δ(Ω) and the access policy . πD : ∪H

t=1{It
i} ×

Δ(Ω) → Δ(AD). 

Before elaborating on the two critical components of ZTD in Sect. 5.3, we first 
remark on the expressive power of AIMG in modeling the cyber defense of 5G
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networks under complex information structures. In particular, Definition 1 leads to 
a systematic characterization of various information structures, such as one/double-
sided information asymmetry and incomplete/imperfect information. 

Definition 4 (One/Double-sided Information Asymmetry) The player i is said to 
be informationally superior than j if .It

j ⊊ It
i , for all t . This information asymmetry 

is one-sided since the player i is always better informed than its opponent. If there 
exists t such that .It

i \It
j /= ∅ and .It

j \It
i /= ∅, the resulting information structures 

are of double-sided information asymmetry. Both parties acquire private information 
hidden from the other, and neither achieves information superiority. 

Definition 5 (Incomplete and Imperfect Information) For the player i, the  
AIMG is of incomplete information if .ω /∈ It

i for all t . The AIMG is of imperfect 
information if there exists a t such that .It

i \ {ω} ⊊ Ht \ {ω}. 
The following uses lateral movement in 5G networks as a running example to 
illustrate these information structures in ZTD, which is based on [47]. 

5.2 Defending Against Lateral Movement: A Running 
Example 

Consider a 5G network represented by a directed graph .G = 〈V,E〉, where V 
is the set of nodes, each of which represents a device/facilities connected to the 
network, and .E = {(u, v)|u, v ∈ V } denotes the set of edges, with each directed 
edge representing the stored service connection. For example, .(u, v) indicates that 
the user visiting node u can move towards node v using stored credentials. In this 
example, we assume that the attacker moves laterally using stolen credentials in the 
5G network, attempting to reach a sensitive target node with access to some entry 
node such as mobile devices. The defender aims to validate the user’s authentication 
when accessing neighboring nodes and reject the malicious attacker. This validation 
can be achieved by Multi-factor Authentication (MFA) [48]. However, Each MFA 
over the edge incurs a cost, as MFA consumes additional security resources and 
time that degrade the system performance of the underlying network. The defense 
objective is to balance the system performance and security by strategically picking 
a set of edges for authentication validation. 

To demonstrate the expressive power of AIMG, we formulate the above defense 
problem using game-theoretic language developed in Definition 1. Two decision-
makers are involved in this game: the defender and the user of an uncertain type. 
The user’s type space is binary .Ω = {0, 1}, where .ω = 0 indicates that the user is 
legitimate, whereas the user is the malicious attacker if .ω = 1. The type distribution 
. ρ can be considered uniform since the two types are indistinguishable from the 
defender’s viewpoint at the beginning. With historical data, the defender can treat 
the empirical frequency of malicious users as the type distribution, which reflects 
the defender’s prior knowledge of the adversarial environment.
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Suppose the attacker visits a node u at time t . Let  . V t be the set of neighboring 
nodes that can be reached using stored credentials. Mathematically, for any . v ∈
V t , there exists a .(u, v) ∈ E. Denote the collection of such edges by . Et , and the 
resulting subgraph .Gt = 〈V t , Et 〉 ⊂ G is referred to as the authentication graph. 
The user can easily visit any node within the authentication graph if the defender 
does not impose MFA on . Et . Define .Lt : V t → {0, 1} as the indicator function. For 
any .v ∈ V t , .Lt(v) = 1 is v has been visited before time t , otherwise .Lt(v) = 0. 
With a slight abuse of notation, we treat .Lt ∈ {0, 1}|V t | as a binary vector of time-
varying dimensions. 

The state variable comprises the authentication graph and the indicator, . st =
(Gt , Lt ), which captures the progress of the lateral movement and is fully observ-
able to the attacker and the defender. With modern security machinery such 
as Intrusion Detection System (IDS) [43] and Security Information and Event 
Management (SIEM) [44], the trace of the user/attacker creates a sequence of 
events that can be used for security analysis. Consequently, the defender can acquire 
additional observation of the network system, which is captured by the partial 
observation . oD in AIMG. The security machinery producing such observation 
corresponds to the observation function . σD in Definition 1. Note that the attacker’s 
partial observation is degenerate in this case, i.e., .OA = ∅. 

The action sets of the two parties are specified below. The attacker moves 
laterally in the network and chooses the next node to visit at each time step. Given 
the current state .st = 〈Gt,Lt 〉, the attacker’s action set includes a collection of 
edges .AA := {(u, v)|(u, v) ∈ Et, Lt (u) = 1, Lt (v) = 0}, of which the outbound 
node v is to be visited. In APT, the stealthy attacker only picks one edge at each time 
step to evade detection. To combat the lateral movement, the defender strategically 
picks a subset of . Et and imposes MFA validation accordingly. Mathematically, the 
defense action set amounts to the power set of . Et , i.e., the set of all possible subsets 
of . Et , which is denoted by .AD = 2Et

. 
The system evolution is determined by the joint action of both parties, where 

the attacker picks an edge . at
A while the defender selects a subset of edges for 

MFA . at
D . Given the current authentication graph . Gt , one needs to satisfy the 

MFA requirements if .at
A = at

D before moving to the next node. It is assumed 
that the legitimate user (.ω = 0) has a higher chance to pass this MFA, while the 
malicious attacker is rejected. On the occasion that .at

A /∈ at
D , both types can easily 

move forward. The authentication graph and the visiting history shall be updated 
accordingly when the user/attacker reaches a new node, and this procedure repeats 
until the end of the horizon. The horizon length .H ∈ (0,∞) denotes the maximum 
time for the attacker to operate within the network without credential renewal. The 
identity life-cycle lasts for H time steps, after which the stored credentials expire, 
and the attacker loses the foothold in the network. 

The utility function captures the trade-off between operation costs resulting 
from authentication and system security. From the defender’s stance, the cost of 
authentication validation over an edge is given by the scalar .c : E → R, and the total 
cost of imposing MFA on a subset of edges . aD is defined as (with abuse of notation)
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.c(aD) = ∑
e∈aD

c(e). In addition to the authentication cost, system security is also 
a key factor in the evaluation of defense effectiveness. Denote by . v∗ the target node, 
and the indicator function .Lt(v∗) implies whether the target has been reached or 
not. Only when the malicious attacker (.ω = 1) visits . v∗, the network system is 
compromised, incurring a devastating cost M . Consequently, the defender’s utility 
depends on the hidden type and is defined below. 

. uD(st , at
D, at

A, ω) =
{

c(at
D), if ω = 0,

c(at
D) + MLt(v∗), otherwise.

Likewise, the attacker’s utility function is also type-dependent. For the malicious 
attacker, passing the MFA is laborious and incurs a huge cost .−M̂ . In contrast, the 
MFA validation is effortless. Whatever the type is, the attacker/user is rewarded by 
R when arriving at the target node, and they share the same transition cost . u(st , at

A)

when navigating within the network. Using mathematical terms, the utility function 
is as below. 

. uA(st , at
D, at

A, ω) =
{

u(st , at
A) − RLt(v∗), if ω = 0,

u(st , at
A) + M̂1{at

A∈at
D} − RLt(v∗), otherwise.

5.3 Trust Evaluation and Access Policy in Zero-Trust Defense 

Heretofore, our discussions have primarily concerned the theoretical underpinning 
of ZTD provided by the game-theoretic framework (AIMG) and AIMG’s expres-
sivity regarding information structures. This subsection shifts the focus from ZTD 
modeling to ZTD design, and the key message is that the game-theoretic solution 
concept leads to effective and automated ZTD in 5G networks. 

We begin with the trust engine and trust evaluation in ZTD. Depending on its 
architecture, the trust engine can be categorized into attribute-based, Bayesian, 
and machine-learning-based trust engines. The attribute-based trust engine (ABTE) 
evaluates the trustworthiness of entities based on their specific attributes or charac-
teristics. Attributes are specific properties or qualities of an entity that are relevant 
to determining trust, which can include factors such as the security posture of 
devices and endpoints, the user’s location, time of access, and the sensitivity 
of the requested resource. The evaluation process involves assigning weights or 
importance to different attributes based on their significance in determining trust. 
These weights or importance are often pre-defined policies or algorithms, and hence, 
ABTE relies heavily on the domain knowledge of the security context and involves 
handcrafting. 

The following subsections introduce another two trust engine architectures built 
upon Bayesian inference and machine learning, leading to automated dynamic trust 
evaluation capable of adapting to a variety of security scenarios. We refer to the two
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Table 1 A comparison of three kinds of trust engines. Compared with ABTE, BTE, and MLTE 
can adapt to new scenarios without significantly resetting the engine configuration. MLTE is a 
data-driven trust engine that does not require a complete grasp of the domain knowledge, yet, the 
price to pay is that its offline pre-training needs a decent amount of data 

Domain knowledge Offline training Online computation Adaptation 

ABTE ✓ ✗ ✗ ✗ 
BTE ✓ ✗ ✓ ✓ 
MLTE ✗ ✓ ✓/✗ ✓ 

trust engines as the Bayesian trust engine (BTE) and the machine-learning-based 
trust engine (MLTE), respectively. A summary of these trust engines is presented in 
Table 1. 

5.3.1 Bayes Trust Engine 

Definition 6 (Bayes Trust Engine) A trust engine is said to be Bayesian if the 
trust evaluation is produced recursively using the Bayes rule. Let It+1 

i \ It 
i be the 

emerging information at time t + 1, then the trust bt+1 is obtained by (3a) and 
the Bayesian update is given by (3b), where P(It+1 

i \ It 
i |ω) is the probability of 

observing It+1 
i \ It 

i conditional on the hidden type ω. 

.bt+1 = Ф(It+1
i ) = Ф(It+1

i \ It
i , b

t ), (3a) 

.bt+1(ω) = bt (ω)P(It+1
i \ It

i |ω)∑
ω'∈Ω bt (ω')P(It+1

i \ It
i |ω')

. (3b) 

Using the lateral movement example in Sect. 5.2, the emerging information 
for the defender at time t + 1 is  It+1 

i \ It 
i = {at 

A, at 
D, st+1, ot+1}. Given  

the two parties’ policies πA and πD , the conditional probability is defined 
as P(at 

A, at 
D, ot , st+1|ω) = P(st+1|st , at 

D, at 
A, ω)σ(ot |st , at 

A, at 
D,ω)πD(at 

D|st ) 
πA(at 

A|st , ω). Consequently, the belief update is obtained through the following 
equation. 

. bt+1(ω) = bt (ω)P (st+1|st , at
D, at

A, ω)σ (ot |st , at
A, at

D, ω)πA(at
A|st , ω)∑

ω' bt (ω')P (st+1|st , at
D, at

A, ω')σ (ot |st , at
A, at

D, ω')πA(at
A|st , ω')

.

(4) 

Compared with the ATE, the BTE adapts to the online environment by processing 
emerging information recursively without pre-training or preparation. As a plug-
and-play engine, BTE requires a decent understanding of the network operation to 
compute the conditional probability P(It+1 

i \It 
i ), including the system transition P , 

the security monitoring machinery σ , and the attacker’s strategy πA.
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Several remarks are in order on the practicability of BTE. Except for the 
anticipated strategy πA, the system transition function P and the observation 
function σ are readily accessible to the defender. In the lateral movement example, 
the system transition is deterministic: if one edge (u, v) is picked, the next node 
must be the head node v, and the associated authentication graph and the indicator 
are determined accordingly. Consider the IDS as the observation function. The 
corresponding observation space is binary OD = {0, 1}, where 0 means no alarm is 
raised while 1 indicates that a security alert is signaled, warning the defender that 
the user is more likely to be malicious. In this case, σ(ot = 1|st , at , at 

D,ω  = 1) 
is the detection rate, and σ(ot = 1|st , at , at 

D,ω  = 0) is the false alarm rate, both 
of which are included in the IDS configuration revealed to the defender. As one 
can see from (4), the attacker’s strategy πA is involved in the Bayesian update, 
even though it is explicitly included in the information structure It 

D . Due to the 
predictive nature of equilibrium in game theory, the defender is able to derive the 
attacker’s optimal strategy using the game tuple in Definition 1, from which the 
attacker has no incentive to deviate. Using plain words, the defender can anticipate 
the attacker’s strategy πA and use this predicted strategy the update the trust. 
Section 5.3.3 elaborates on this equilibrium notion in detail, where we articulate 
the close connection between BTE and Bayesian Nash equilibrium in game theory, 
leading to an adaptive zero-trust defense in contrast to ATE. 

One computational hurdle of BTE lies in that the denominator in (3b) is given 
by an integration (summation) of the conditional probability P(It+1 

i \ It 
i |ω') with 

respect to the trust bt (ω'). As the arms race between the defender and the attacker 
heats up, the attack techniques develop day and night, and consequently, the 
number of attack types grows astronomical. As a result, the trust evaluation process 
in the online execution is burdened with great computation overhead, causing 
authentication latency in ZTD. 

In addition to the computation overhead, another limitation of BTE is that it 
relies heavily on the domain knowledge of the underlying network. Take the lateral 
movement defense as an example. The observation function σ corresponds to a 
network security machinery (e.g., SIEM) that monitors the attacker’s activities 
and reports incidents to network operators. Note that such feedback from the 
security machinery may not be directly applicable in BTE on some occasions since 
mathematically σ needs to be a conditional probability measure in BTE as shown 
in (4). For example, if the observation variable o ∈ O is a log message or an audit 
trail of the network system, then one needs to infer the attack type distribution 
behind these security events, requiring certain expertise in network security. 

5.3.2 Machine Learning Trust Engine 

To address these limitations of BTE, one alternative approach is to utilize machine 
learning methodologies, which offer an end-to-end trust evaluation. The machine-
learning-based trust engine undergoes an offline training process before the online 
execution, and no heavy computation is involved in the online phase, although
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lightweight model updates can happen on some occasions to adapt the machine-
learning model to new security scenarios [47]. Powered by recent advancements in 
large language models [49] and other related deep learning architectures [50, 51], 
ML models capable of processing multi-modal inputs (texts and audio, etc.) display 
great potential in creating end-to-end trust evaluation that maps the raw system 
log files to a trust metric without much human involvement. Compared with 
BTE, MLTE does not require domain knowledge or online computation, yet the 
price to pay is the pre-training process, and collecting high-quality training data 
can be cumbersome. This is because the training data shall include incidence 
reports, system logs, and other related log messages, which often contain sensitive 
information regarding the network systems, and hence they are not open-sourced. 
Even if they are, these data come from a specific scenario, and the resulting trust 
engine may not generalize well to other network defense problems. 

Despite its limitations, MLTE provides a data-driven trust evaluation that is 
suitable for large-scale complex 5G networks. Mathematically, MLTE performs 
a statistical inference task where the engine infers the hidden type using the 
observations. The following takes variational Bayes inference (VB) as an example 
to illustrate how to train and deploy an inference network as the trust engine. In 
statistical inference, VB refers to a family of techniques in Bayesian inference for 
approximating the posterior probability of unobserved variables (e.g., hidden types) 
conditional on the observed ones (e.g., those in the . It

i). We pick VB because of 
its close connection with BTE and wide applications in machine learning problems, 
such as variational autoencoders, which gives rise to many off-the-shelf ML toolsets 
readily available to network security practitioners. We refer the reader to [51] for  
more details on statistical inference and its applications. 

For simplicity, we drop the time index in the information structure and use . I in 
the following discussion. Adopting a probabilistic viewpoint, we consider . I and . ω
as two random variables generated by some random process. The process consists 
of two steps: (1) a realization . ω is generated from the prior . ρ; (2) a realization 
. I is generated from a conditional distribution .P(I|ω), which is in a similar vein 
as (3b). The goal of the inference task is to derive the posterior distribution . P(ω|I)
characterized by the Bayesian rule: .P(ω|I) = P(I|ω)ρ(ω)/

∫
P(I|ω)ρ(ω)dω. 

Similar to the computation issue in BTE, the integral is intractable. 
Denote by .qφ(ω|I) a neural network (with parameter .φ ∈ Rn) approximation 

to the true posterior .P(ω|I). Taking inspiration from the evidence lower bound 
(ELBO) method [51], we derive a loss function for the training purpose whose 
minimizer .qφ∗(ω|I) serves as the trust engine in ZTD. Given a realization . I, its 
marginal likelihood can be written as 

. logP(I) = DKL[qφ(ω|I)||P(ω|I)] +L(φ;I), (5) 

where .L(φ;I) = logP(I) − DKL[qφ(ω|I)||P(ω|I)]. . DKL[qφ(ω|I)||P(ω|I)] :=
Eqφ(ω|I)[log(qφ(ω|I)/P(ω|I))] is the KL divergence between the two distribu-
tions. The intuition behind this likelihood expression is that the KL divergence 
.DKL[qφ(ω|I)||P(ω|I)] in (5) measures the discrepancy between the true posterior
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.P(ω|I) and its neural network approximation .qφ(ω|I), which is to be minimized. 
From (5), minimizing the KL term is equivalent to maximizing .L(φ;I). Since the 
KL term is non-negative, .L(φ;I) lower bounds the log-likelihood on the left-hand 
side, which is referred to as the evidence (or variational) lower bound. 

Compared with the KL term .DKL[qφ(ω|I)||P(ω|I)], this lower bound, rewritten 
as below, does not explicitly involve the posterior distribution .P(ω|I). The rest of 
this subsection is devoted to the stochastic optimization problem .maxφ L(φ;I), 
which amounts to the pre-training of MLTE. 

. L(φ;I) = logP(I) − DKL[qφ(ω|I)||P(ω|I)]
= logP(I) − Eqφ(ω|I)[log qφ(ω|I) − logP(ω|I)]
= Eqφ(ω|I)[logP(I)] − Eqφ(ω|I)[log qφ(ω|I) − logP(ω|I)]
= Eqφ(ω|I)[− log qφ(ω|I) + log P(I, ω)]. (6) 

Consider some dataset .D := {I(k)}Kk=1 consisting of K independently identically 
distributed (i.i.d.) sample observations under random attack types .ω(k) drew from 
. ρ(·). .I(k) represents historical security incidence reports during the network 
operation, and the superscript . (k) denotes the sample index rather than the time 
step. Note that only the dataset . D is available in training, whereas the variable . ω(k)

remains hidden (the prior . ρ is known), as often witnessed in real-world scenarios. 
In addition to the inference network .qφ(ω|I), we introduce a generative network 

.pθ(I|ω), .θ ∈ Rm, which approximates the conditional probability .P(I|ω). Conse-
quently, the joint distribution .P(I, ω) in (6) can also be parameterized: . P(I, ω) =
ρ(ω)pθ (I|ω). With a slight abuse of notation, we denote such parameterization by 
.pθ(I, ω). Similar to our argument in justifying the use of . πA in (4), .pθ(I|ω) can be 
interpreted as the defender’s conjecture of the attack strategy that eventually leads to 
the resulting observation . I. With this additional parameterization, the lower bound 
under the datapoint .I(k) becomes 

.L(φ, θ;I(k)) = E
qφ(ω|I(k)

)
[− log qφ(ω|I(k)) + logpθ(I(k), ω)]. (7) 

The remaining task is simply to approximate the gradient of the expectation in (7) 
using samples and to apply stochastic gradient descent. Note that the expectation is 
taken with respect to the hidden variable . ω conditional on . Ik . Hence, one needs to 
first draw a batch of M samples .{ω(k,l)}Ml=1 from . qφ , and then compute the gradient 
estimators 

.

∇̂φL(φ, θ;I(k)) = − 1

M

K∑
l=1

log qφ(ω(k,l)|I(k))∇φ log qφ(ω(k,l)|I(k))

+ 1

M

K∑
l=1

logpθ(I(k), ω(k,l))∇φ log qφ(ω(k,l)|I(k)).

(8a)
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.∇̂θL(φ, θ;I(k)) = 1

M

K∑
l=1

∇θ logpθ(I(k), ω(k,l)). (8b) 

The first gradient estimation in (8a) rests on a Monte Carlo (MC) estimation trick 
detailed below. The key message of this trick is that the gradient of an expectation 
can be expressed as an expectation of another gradient, which can be approximated 
using Monte Carlo sampling. Suppose, for the time being, one needs to estimate the 
gradient .∇φEqφ(ω)[f (ω)] where . I is suppressed, and .f (ω) is an arbitrary function. 
Rewriting the gradient term in the integral form, we obtain 

.

∇φEqφ(ω)[f (ω)] = ∇φ

∫
f (ω)qφ(ω)dω

=
∫

f (ω)∇φqφ(ω)dω

=
∫

f (ω)
∇φqφ(ω)

qφ(ω)
qφ(ω)dω

=
∫

f (ω)∇φ log qφ(ω)qφ(ω)dω

= Eqφ(ω)[f (ω)∇φ log qφ(ω)].

(9) 

Therefore, the MC estimation under K samples .{ω(l)}Kl=1, denoted by . ̂∇φ , is given  

by .∇̂φ = 1/K
∑K

l=1 f (ω(l))∇φ log qφ(ω(l)). 
We apply this trick to derive the first gradient estimation. As one can see from 

the (10), the gradient .∇φL(φ, θ;I(k)) comprises three terms. 

∇φL(φ, θ;I(k) ) 

= ∇φE 
qφ(ω|I(k) 

)
[− log qφ(ω|I(k) ) + log pθ(I(k) , ω)] 

= ∇φ

∫ (
− log qφ(ω|I(k) ) + log pθ(I(k) , ω)

)
qφ(ω|I(k) )dω 

= −
∫

∇φ log qφ(ω|I(k) )qφ(ω|I(k) )dω︸ ︷︷ ︸
① 

−
∫

log qφ(ω|I(k) )∇φqφ(ω|I(k) )dω︸ ︷︷ ︸
② 

+
∫

logpθ(I(k) , ω)∇φqφ(ω|I(k) )dω︸ ︷︷ ︸
③ 

. (10) 

Since .∇φ log qφ(ω|I(k)) = ∇φqφ(ω|I(k))/qφ(ω|I(k)), ①. = ∇φ

∫
qφ(ω|I(k))dω =

0. Applying the trick to the second and third terms, we arrive at the following 
equations.
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Replacing all the expectations in ①, ②, and ③, one obtains the MC estima-
tion in (8a). It should be noted that such MC estimation, though intuitive and 
straightforward, suffers from high variance [52]. One effective remedy is the 
reparameterization technique [51], and the key idea is that one can express the 
random variable as .ω = gφ(ε,I) (reparameterization), where . ε is an auxiliary 
variable with independent marginal .p(ε). When generating .ω(k,l), one follows 
the procedure: .ε(l) ∼ p(ε) and .ω(k,l) = gφ(ε(l),I(k)). For example, when 
.ω ∼ N(μ,Σ2) (univariate Gaussian with mean . μ and variance . Σ), a simple 
reparameterization is .ω = μ + Σε, .ε ∼ N(0, 1). Since this parameterization is 
beyond the scope of this chapter, we refer the reader to [51] for more details on the 
reparameterization in VB. 

5.3.3 Optimal Access Policy: Approximation and Learning 

With the trust evaluation process discussed above, we are ready to articulate 
the access policy .πD in ZTD. To simplify our exposition, we take BTE as the 
underlying trust engine, and our argument also applies to other kinds of trust 
engines. Recall that the defender’s goal is to minimize the objective function 

.minπD∈ΠD
E

{∑H
t=1 Eω∼bt [uD(st , at

D, at
A, ω)]

}
. With a slight abuse of notation, let 

.uD(st , at
D, at

A, bt ) = Eω∼bt [uD(st , at
D, at

A, ω)] be the expected utility under the 
trust . bt . Before articulating how to solve the optimal policy, we first address the 
solution concept in AIMG, i.e., what is the optimality criterion in this multi-agent 
decision-making? 

In general, what distinguishes a game problem from a single-agent optimization 
is that players’ optimization problems are entangled. In AIMG, the defender’s 
problem is given by .minπD∈ΠD

E[∑H
t=1 uD(st , at

A, at
D, bt )], where the attacker’s 

actions . at
A are involved. To see this more clearly, we expand the expectation 

expression, and the defender’s problem becomes 

. min
πD∈ΠD

EπD,πA,P,σ

[
H∑

t=1

uD(st , at
A, at

D, bt )

]
. (11) 

Hence, when the defender determines the access policy, it must take the attacker’s 
move into account and vice versa. From our early argument in BTE, one can 
view the defender’s optimal policy as the minimizer to (11) under the anticipated 
attacker’s strategy . π∗

A, i.e., 

.π∗
D ∈ argminEπD,π∗

A,P,σ

[
H∑

t=1

uD(st , at
A, at

D, bt )

]
. (12)
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Then, the remaining question is how to derive such anticipation. From Nash’s 
seminal work [53], one guiding principle is the unilateral deviation principle, which 
states that . π∗

A is a rational anticipation of the attacker’s move if the player has no 
incentive to unilaterally deviate from such strategy, i.e., . π∗

A solves the minimization 
problem in (13). The pair .(π∗

D, π∗
A), given by (12) and (13), constitutes a Nash 

equilibrium of the AIMG. A formal definition is presented in Definition 7. 

.π∗
A ∈ argminEπ∗

D,πA,P,σ

[
H∑

t=1

uA(st , at
A, at

D, ω)

]
. (13) 

Definition 7 (Perfect Bayesian Nash Equilibrium) Consider the information-
asymmetric game with the objectives of the attacker and the defender defined 
by (11), (12), and (13). A triple of .〈π∗

D, π∗
A, {bt }Ht=1〉 is said to be the perfect 

Bayesian Nash equilibrium of this game if it satisfies 

.π∗
D(·|st , bt ) ∈ argminEπD,π∗

A,P,σ [
H∑

τ=t

uD(sτ , aτ
A, aτ

D, bτ )], for any t ∈ [H ], . 

(P1) 

π∗
A(·|st ) ∈ argmin Eπ∗

D,πA,P,σ [ 
H∑

τ=t 
uA(sτ , aτ 

A, aτ 
D,ω)], for any t ∈ [H ], . (P2) 

bt+1(ω) = 

⎧⎨ 

⎩ 

bt (ω)P(It+1 
D \It 

D |ω)∑
ω'∈Ω bt (ω')P(It+1 

D \It 
D |ω') 

if It+1 
D is realizable, 

an arbitrary probability distribution, otherwise. 
(C1) 

. It
D is realizable if there exists . ω such that the conditional probability . P(It+1

D \It
D|ω)

is strictly greater than zero. 

In Definition 7, (P1) and (P2) are refinements of (12) and (13), respectively. When 
.t = 1, the refinements coincide with (12) and (13), leading to a Nash equilibrium. 
What makes the refinements “perfect” is that the .argmin equations hold for any 
.t ∈ [H ]. (P1) and .(P2) are referred to as the perfectness conditions in game theory 
[54], meaning that either player has the incentive to deviate from the equilibrium 
strategy no matter when (time index t) and where (the state . st and belief . bt ) they  
start to play AIMG. Finally, the equilibrium in Definition 7 is called Bayesian since 
the belief is generated in a Bayesian manner. (C1) is referred to as the consistency 
condition: the belief update shall be compatible with the strategy since .π∗

A is 
involved in the Bayesian update, see (4). In summary, this perfect Bayesian Nash 
equilibrium (PBNE) is the solution concept considered in the rest of this chapter, 
and the optimal access policy refers to the equilibrium strategy . π∗

D in PBNE. 
Solving generic PBNE analytically remains largely an open question, even 

though recent breakthroughs have shed light on the two-stage Markov game case 
where the PBNE conditions are rephrased using bilevel-bilinear programming [55].
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The rest of this subsection is devoted to the numerical approximation of PBNE. 
Similar to solving single-agent Markov decision processes where computational 
methods can be divided into value-based [56, 57] and policy-based [58, 59] 
approaches, the computation of PBNE (approximately) also follows either value-
based, i.e., first approximating the expected utility in (P1) and (P2), or policy-based 
ones, i.e., searching for the policy directly. The following presents two representa-
tive algorithms from the two categories, respectively. 

Belief-Value Iteration We begin with the value-based approach. Recall that the 
perfectness conditions (P1) and (P2) are an extension of Bellman’s principle 
of optimality [60] to the multi-agent setting. Naturally, one can transplant the 
value iteration algorithm [60] in dynamic programming to AIMG. However, value 
iteration operates using backward induction, whereas the belief update is a forward 
process (Bayesian update). Consequently, one cannot update the value function (i.e., 
the expected utility) and the belief simultaneously. 

A variant of value iteration is proposed in [11] to address the conflict between 
the value function update and the belief update. The gist is that the updates 
are performed alternatively: updating the value while fixing the belief and vice 
versa. We refer to such alternative belief/value updates as belief-value iteration 
(BVI). Denote by .G(s, b, uD, uA) the stage game at the state s under the belief 
b, where the utility functions are .uD(s, aA, aD, b) and .uA(s, aA, aD, ω), .ω ∈ Ω. 
Let .BayesNash[G(s, b, uD, uA)] be the Bayesian Nash equilibrium operator that 
takes in the stage game utilities and outputs the equilibrium payoffs . (u∗

D, u∗
A) =

BayesNash[G(s, b, uD, uA)]. The equilibrium payoffs .(u∗
D, u∗

A) correspond to the 
minimum in (P1) and (P2), respectively, with the summations inside the expec-
tations are replaced by the stage game utilities. Mathematically, this equilibrium 
operator is characterized by bilinear programming [11, 55]. 

The BVI starts with a belief system initialization .{b(t,0)}Ht=1. For  the  k-th 
iteration, BVI first fixes the belief system .{b(t,k)}Ht=1. The  k-th value iteration is 
given by the backward induction below. For .t = H,H − 1, . . . , 1, 

.

V
(t,k)
D (s, b(t,k)), V

(t,k)
A (s) = BayesNash[G(t,k)(s, b(t,k))],

G(H,k)(s, b) = G(s, b, uD, uA),

G(t,k)(s, b) = G(s, b, uD + V
(t+1,k)
D , uA + V

(t+1,k)
A ),

(VI) 

where .G(t,k) is referred to as the subgame starting from time t during the k-
th iteration, bearing the same spirit of the term “cost-to-go” in MDP [60]. The 
utility function in this subgame is defined in (14). The attacker’s utility . uA + VA

can be defined similarly. We remark that by applying the equilibrium operator 
BayesNash in (VI), the perfectness conditions in Definition 7 are satisfied, and 
.V

(H,k)
D and .V (H,k)

A returned by (VI) are the equilibrium payoffs of the two players, 
respectively, under the belief system .{bt,k}Ht=1.
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. uD + V
(t+1,k)
D (s, aA, aD, b(t,k)) = uD(s, aA, aD, b(t,k))

+ Es'∼P [V (t+1,k)
D (s', b(t+1,k))]. (14) 

Given the value functions, the defender’s and the attacker’s policies can be 
determined accordingly by solving .G(t,k), and we denote the resulting policies by 
. πk

D and . πk
A, respectively. To complete the k-th iteration, one needs to update the 

belief system according to the Bayes rule in (4), which is referred to as belief 
iteration (BI) in this context shown in (BI). This belief iteration guarantees the 
consistency between the policies .πk

D, πk
A and the belief systems .{b(t,k+1)}Ht=1, as  

mandated by (C1). 

.b(t+1,k+1)(ω) = b(t,k)(ω)PπD,πA
(st+1|st , ω)∑

ω' b(t,k)(ω')PπD,πA
(st+1|st , ω')

, b(1,k+1)(ω) = ρ(ω). (BI) 

This interleaved procedure repeats until no significant improvement is observed in 
the updated value functions. Even though intuitive, BVI does not offer any conver-
gence guarantees since the operator BayesNash in general is not a contraction 
mapping [61]. Even assuming it is, we note that the introduction of (BI) further 
complicates the analysis, and it remains unclear whether the combination of (VI) 
and (BI) is a contraction mapping. Yet, it is safe to conclude that shall BVI converge, 
the resulting policies and the belief system must be a PBNE. 

Policy Gradient We now shift the focus from the value-based approach to the 
policy-based one. For simplicity, we fix the attacker’s policy in the sequel and 
present the policy gradient method [58] in reinforcement learning. The key message 
is that the defender’s optimal policy can be learned from sample trajectories using 
stochastic gradient descent. Consider the defender’s problem in (15) where the 
attacker’s strategy is fixed and suppressed. 

. min
πD∈ΠD

VD := EπD,P,σ

[
H∑

t=1

uD(st , at
A, at

D, bt )

]
. (15) 

Suppose the policy is parameterized by a neural network .πD(φ), φ ∈ R
n. 

Then, one can search for the optimal policy through gradient descent, 
i.e., .φ ← φ − ∇VD(φ) (the learning rate is suppressed). . ∇VD(φ) =
∇EπD(φ),P,σ [∑H

t=1 uD(st , at
A, at

D, bt )]. Recall the MC estimation trick in (9), 
we rewrite the gradient as in (16), referred to as the policy gradient. 

.∇VD(φ) = EπD(φ),P,σ

[
∇ logπD(φ)

H∑
t=1

uD(st , at
A, at

D, bt )

]
. (16) 

Denote a sample trajectory under the policy .πD(φ) (in short, . φ) by  
.𝓁(φ) := {s1, a1A, a1D, u1A, u1D, o1, . . . , sH , aH

A , aH
D , uH

A , uH
D, oH }, where .ut

D =
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uD(st , at 
A, at 

D, bt ), . bt is derived using the Bayes rule in (4). Then, an 
unbiased estimate of .∇VD(φ), denoted by .∇̂V (φ) is constructed as . ̂∇V (φ) =
∇ logπD(φ)

∑H
t=1 ut

D . Denote by .uD(𝓁) = ∑H
t=1 ut

D the empirical return of 
the sample trajectory. One common practice to reduce the variance of the MC 
estimate .∇̂V (φ) is to collect a batch of trajectories .{𝓁(k)}Kk=1 and take the average: 

.∇̂V (φ) = 1/K
∑K

k=1 ∇ logπD(φ)uD(𝓁(k)). Starting from an initialization . φ0, one 
need first implement the policy .πD(φ0) in a simulated network system [62] and 
collect a batch of trajectories .{𝓁(k)}Kk=1. Then, the policy is updated using the policy 
gradient discussed above. The procedure repeats until the parameter . φk stabilizes. 
Since policy gradient is a first-order method, it is only guaranteed to converge to the 
first-order stationary point where .∇VD(φ) = 0. Even though this first-order point 
may not be the exact equilibrium point, it often leads to satisfying defense policy, 
as observed in the literature [63]. 

5.4 Generalizability, Explainability, and Accountability of 
Learning-Based Zero-Trust Defense 

5.4.1 Reinforcement Learning and Explainable Defense 

Even though RL leads to a theoretically guaranteed approach to learning the ZTD 
policy, the missing part is that the learned policy, i.e., the model weights of the neural 
network, remains a black box and is difficult for human operators to comprehend. 
The explainability of RL (XRL), as an emerging field devoted to casting light on 
the inner workings of RL agents, has gained momentum across various research 
communities. Since XRL is still in its infancy, there is no consensus over the 
exact definitions of explainability, and most of the current endeavors try to explain 
the actions of RL agents [64]. Following this line of research, we discuss the 
explainability of the optimal access policy learned by RL in the following, which 
addresses the question: 

How does the RL policy grant or deny access based on the trust evaluation? 
Our XRL approach exploits the mathematical structure of the AIMG and utilizes 

non-parametric policy learning, i.e., the RL policy is expressed in closed form 
without involving neural networks [47, 65]. Hence, our XRL study is more aligned 
with the interpretability of the RL policy, indicating that the intrinsic logic of the 
defense mechanism is transparent and easy to understand rather than a post-hoc 
property. 

The gist of the explainability in ZTD is that the optimal policy is of a threshold 
form [65]. Consider the lateral movement case in Sect. 5.2 as an example, where the 
type space and the defense action space are binary: .Ω = {0, 1} (0-legitimate user, 
1-attacker) and .AD = {0, 1} (0-active defense, 1- inactive). In this example, the 
belief b resides in the two-dimensional probability simplex, which can be uniquely 
determined by its entry .b(0). We refer to .b(0) ∈ [0, 1] as the trust score, implying
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the likelihood of the user is legitimate. A threshold policy .πD(b) is defined in (17), 
and the threshold is given by . τ . As its name suggests, the defense remains idle as 
long as the trust score is above the threshold, while it is activated once the trust score 
is below the critical value. 

.πD(b) =
{
0, 0 ≤ b(0) ≤ τ,

1, τ < b(0) ≤ 1.
(17) 

The advantage of this threshold policy is self-evident: it is a white box clearly 
displaying how the trust evaluation is utilized. The same policy gradient method 
presented above also applies to the learning of thresholds. Even though the 
gradient .∇τ πD does not acquire a closed form, one can leverage the simultaneous 
perturbation stochastic approximation (SPSA) to estimate the gradient [47, 65]. 
The threshold form in (17) also extends to the finite-action case, where . |AD| − 1
threshold values partition the interval .[0, 1] into .|AD| subintervals (the type space 
is still binary). 

5.4.2 Meta-Learning and Generalizable Defense 

The limitation of the threshold policies is concerned with generalization ability. 
The optimal policy (or equivalently, threshold) trained in one network setup cannot 
deal with another scenario where the system vulnerabilities are different from the 
training setup. To facilitate our discussion, denote by .θ ∈ Θ the network system 
configuration that can affect the system transition P (or the observation function . σ ) 
under this configuration. Using the notations in Definition 1, the defender now faces 
a family of games, and the transition function . Pθ of each game is parameterized 
by . θ subject to a distribution .p(θ). We refer to each game under parameter . θ as an 
attack scenario. The policy trained for the scenario . θ does not generalize well to . θ ', 
leading to ineffective ZTD. 

To equip ZTD with generalizability under information asymmetry, a scenario-
agnostic ZTD (SA-ZTD) is proposed in [47], creating a generalizable ZTD capable 
of handling new attack scenarios unseen in the training phase. SA-ZTD rests on 
meta-learning, an emerging learning paradigm that aims to learn a learning strategy 
using training data [66]. In the face of a new scenario unseen in the training phase, 
the obtained learning strategy enables the defender to learn a new defense on the 
fly using far fewer data than from scratch. This idea of defending on the fly is also 
explored in adversarial machine learning leading to impressive defense performance 
[67]. Since real-world applications involve a large (possibly infinite) number of 
attack scenarios, it is intractable to learn the optimal policy for each scenario. 
Powered by meta-learning, SA-ZTD uses only a handful of known scenarios, more 
precisely, sample trajectories from these scenarios. Hence, the word “agnostic,” 
whose root means “not known,” is used to emphasize that the adaptation ability 
is acquired without knowledge of the network configuration of every scenario.
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Two pillars of SA-ZTD are the meta policy .πmeta and the adaptation mapping 
.Ψ : ΠD × Θ → ΠD . The adaptation mapping corresponds to the learning strategy 
mentioned earlier that adapts the meta policy to a new defense .Ψ(πmeta, θ) when 
facing a new scenario . θ . A formal definition of SA-ZTD is given in [47], which we 
restate in Definition 8. 

Definition 8 (SA-ZTD) A pair .〈πmeta,Ψ〉 is said to be a scenario-agnostic zero-
trust defense (SA-ZTD) with respect to a scenario distribution .p ∈ Δ(Θ) if the pair 
solves for the minimization problem 

.min
π,Ψ
Eθ∼p[VD(Ψ(π, θ))]. (18) 

Similar to empirical risk minimization (ERM) [68, 69], a solution to (18) is obtained 
by solving the sample average approximation: 

.(πmeta,Ψ) ∈ argmin
1

|Θ̂|
∑
θ∈Θ̂

VD(Ψ(π, θ)), (19) 

where .Θ̂ ⊂ Θ is a finite collection of scenarios i.i.d. sampled from .p ∈ Δ(Θ). 
The term “agnostic” points to the fact that the exact scenario distribution p is 
usually unknown in security practice and often replaced by an empirical distribution 
provided by security datasets, such as the data from MITRE ATT&CK [70] 
considered in [47]. In summary, the training of SA-ZTD does not explicitly require 
the domain knowledge of each attack scenario, such as the system configuration and 
the observation functions. 

Since the function class .{Ψ|Ψ : ΠD × Θ → ΠD} is infinite-dimensional, 
directly seeking an adaptation mapping through (18) [or (19)] is intractable. One 
remedy is to restrict the focus to the parameterization class where the mapping is 
parameterized by .γ ∈ Rn, .n ∈ Z+. For example, .Ψγ can be parameterized by 
recurrent neural networks, where . γ is the model weights and the optimal adaptation 
is determined by training algorithms [71]. Another well-accepted parameterization 
is the gradient-based adaptation: .Ψγ (π, θ) := π − γ∇VD(π), and . γ is the gradient 
step size to be optimized [72]. 

To arrive at an explainable SA-ZTD, one can pick the gradient-based adap-
tation, as it naturally applies to the non-parametric threshold policies discussed 
in Sect. 5.4.1. To be consistent with previous notations, we replace . π with . τ
whenever speaking of threshold policies, where the . τ denotes the threshold value. 
The minimization problem in (18) turns into 

. min
τ∈[0,1]Eθ∼p[VD(Proj[0,1]{τ − γ∇VD})]. (20) 

The resulting meta policy, as the minimizer to (20), takes the threshold form that 
is explainable to human operators, increasing the accessibility and transparency of 
learning-based ZTD. As argued in [47], the policy gradient method is still applicable
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to (20). Even though the computation expenditure in SA-ZTD is higher than the 
vanilla RL policy in (15), the meta policy can adapt to a variety of new scenarios 
without training from scratch. 

5.4.3 Accountability 

The accountability of machine-learning-based ZTD (ML-ZTD) refers to the respon-
sibility and answerability of those involved in the design, development, deployment, 
and use of machine learning or artificial intelligence technologies in general. 
Accountability aims to ensure that ML-ZTD is developed and utilized in a manner 
that is ethical, transparent, and fair. What distinguishes accountability of ZTD 
in 5G networks from other AI systems is the focus on accountability in system 
engineering, which encompasses three key aspects: responsibility, detectability, and 
attribution. 

Responsibility Accountability rests on the acknowledgment that individuals and 
organizations involved in ML-ZTD development and deployment have responsibil-
ity for the ZTD’s behavior and impact on the network system. Specifically, this 
responsibility revolves around the question of whether each component involved in 
ZTD architecture, such as the security machinery, the trust engine, and the access 
policy, contributes to an ethical, transparent, and fair operation in the network. To 
be more precise, this responsibility provides compliance requirements and failure 
standards for each component. 

Detectability Responsibility gives the rule book, and the next question to address 
is whether ZTD operation violates the compliance requirements. Mathematically, 
the detectability question pertains to statistical inference, such as hypothesis testing 
and VB methods, where one infers the ground truth (violation) from collected data. 
Yet, ZTD in 5G networks is a game problem, see Definition 1, where the strategic 
decision-maker can evade the detection, which must be taken into account when 
inspecting the ZTD operation. Game theory naturally provides a system-science 
viewpoint on the detectability question in multi-agent systems, where the incentives, 
capabilities, and private information of the investigator and the investigatee can be 
captured through the AIMG in Definition 1. This game-theoretic viewpoint leads to 
a strategic detection framework. 

Attribution No node is an island in large-scale complex 5G networks, and one 
failing node or component may spur a chain reaction over the network and 
the ZTD system. When facing a cascading failure in the network defense, one 
needs to identify the root cause and upgrade the ZTD accordingly. One shall 
not confuse detection with attribution, even though both of them aim to identify 
the malfunctioning part of the ZTD and the network system. However, detection 
addresses the question “where it is”, whereas attribution focuses on “why it is such.” 
Mathematically, attribution amounts to a causal inference task [59], where the casual 
relationship among random variables is established using data.
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6 Decision-Dominance Defense 

While ZTD provides us with a comprehensive framework for trust evaluation and 
access policy, the networked entities still face multi-stage persistent cyber threats. 
Therefore, it is crucial to adopt an integrated defense approach that recognizes the 
intrinsic value of the cyber defense chain and the fundamental principles of zero 
trust. Decision dominance defense (D. 3), which conceptualizes the interactions of 
cyber defense/kill chain as a stochastic process, forms the backbone of the holistic 
defense mechanism, with zero trust defense acting as a critical component at every 
stage. By treating the cyber defense chain as a dynamic system, we acknowledge 
the unpredictable nature of cyber threats and the need for proactive decision-
making based on real-time information. By incorporating zero trust principles 
throughout this process, from initial access controls to ongoing monitoring and 
incident response, we create a robust and resilient defense model that embraces 
uncertainty, eliminates blind spots, and ensures continuous protection against the 
relentless onslaught of cyber threats. 

Understanding the intricacies of an attack is crucial for developing effective 
defense strategies. A traditional Lockheed Martin Kill Chain [73, 74] usually 
outlines seven distinct stages that malicious actors typically follow. These stages 
include Reconnaissance, where attackers gather information on potential targets; 
Weaponization, where they create malicious tools or payloads; Delivery, the method 
through which the attack is transmitted; Exploit, where vulnerabilities are leveraged 
to gain access; Installation, the establishment of a foothold within the target system; 
Command & Control, the creation of communication channels for remote control; 
and finally, Actions on Objectives, where the attacker achieves their intended goals 
within the compromised system. Comprehensively analyzing and understanding 
each stage of the Kill Chain requires the defender to effectively engage with 
adversaries while minimizing the time it takes for an attack to unfold. A proactive 
cyber defense chain (e.g., [75, 76]) aims to disrupt and curtail the attacker’s progress 
at each stage of the Kill Chain, reducing their opportunity to inflict significant 
damage. D. 3 integrates real-time threat intelligence, advanced analytics, and rapid 
response mechanisms, including monitoring, detection, response, and attribution, 
maximizing the abilities to mitigate and neutralize the threats, actively impeding 
the attacker’s progress and shortening the overall time it takes for an attack to 
materialize. It empowers the 5G network defender to take a more active role in their 
defense, enabling them to stay one step ahead of the adversary and significantly 
enhance their resilience against evolving cyber threats. 

The essence of D. 3 is the critical timing of cutting off the cyber kill/defense chain. 
In MWD scenarios, while the general concept of understanding, deciding, acting, 
and assessing fast still holds (i.e., strangling the threats in its cradle), one must take 
the real-time warfare conditions and game-theoretic thinking into consideration, 
“knowing oneself and knowing the enemy”. Therefore, in the sequel, we formalize 
D. 3 as a Dynkin’s type of optimal stopping game acting on a Markov chain of multi-
stage cyber-attacks/defense [77], and characterize the equilibrium strategy between
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the two competitive parties. While our model is built upon ZTD components, the 
notations should not be confused with the previous section. 

6.1 D3 as Dynkin’s Game 

By convention, let .(Ω,F,P) be the probability space. Denote the time index during 
a lifecycle of the interactions between the cyber kill/defense chain by .t = 1, . . . , T . 
Let .(Xt )0≤t≤T be a Markov process modeling the cyber threats, living in space 
.(X,G), and are adapted to the filtration .F = (Ft )0≤t≤T with transition kernel 
. P. The Markovian state captures the identifiable elements in the system, e.g., 
it can represent the Structured Threat Information eXpression language (STIX) 
that facilitates this effort [77]. The collection of STIX-type data requires active 
interactions between the two parties. 

We are given three payoff functions .φ, ζ, ψ : X → R that capture the cyber 
risk given system states, where from the defender’s perspective, (the attacker’s 
perspective would be the opposite) 

1. . φ is the early termination payoff, which is activated when the cyber defender 
actively terminates the persistent monitoring/detection and resets the system 
credential before the malicious operations, including data exfiltration, denial of 
service, and delivery of ransomware, etc. are executed; 

2. . ψ is the late response payoff, which is activated when the cyber defender 
responds to the data exploitation and command & control actions without 
summarizing the monitoring/detection phase. 

3. . ζ is the confrontation payoff, which is activated when both parties have 
extracted information through lateral movement/monitoring and engaging, etc., 
and perform attack/defense actions at the same stages. 

It is reasonable to assume that .min(ψ, φ) ≤ ζ ≤ max(ψ, φ), since the confrontation 
often happens when attackers and defenders both have neutralized assessments for 
the system, it should sit in between the worst and best payoffs. 

Here, for simplicity, we first consider the case where the information is sym-
metrical between the network operator/defender and the attacker, i.e., both parties 
have access to the state and utility information. However, this formalism shall not 
exclude the cases where the information is asymmetric and/or the utility functions 
are unknown/uncertain to one of the parties. 

On top of the lower-level cyber threats/defense operations, we define stopping 
times .τ, σ : Ω → {0, . . . , T } to capture the termination decisions for both 
parties. We assume that both the attacker and the defender have access to the 
system state . Xt , .τ, σ are .F-measurable. Denote the set of .F-stopping times by 
.T := {0 ≤ τ ≤ T : {τ(ω) ≤ k} ∈ Fk ∀k ∈ [T ],∀ω ∈ Ω}. Moreover, we expect 
there to be a  .2[T ]/G-measurable map .τ : X→ [T ], where .[T ] = {0, . . . , T }, such 
that the defender/attacker will make termination decisions based on the information 
extracted from . Xt , without awareness of each other’s stopping decisions.
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For stopping times . τ, σ , the value/cost function for the defender/attacker is 
defined as: 

. V τ,σ (x) = Ex[H(τ, σ )] = Ex

[
φ(Xτ )1{τ<σ } + ψ(Xσ )1{τ>σ } + ζ(Xτ )1{τ=σ }

]
,

(21) 

where .H(τ, σ ) : T×T× Ω → R is the random payoff of stopping strategies . τ and 
. σ , . Ex is the conditional expectation operator with respect to the transition kernel 
. Px , i.e., there exists a semi-group . 𝒯such that for any .B(R)/G-measurable function 
g and .t = 0, . . . , T , 

. 𝒯t g(x) := Ex[g(Xt )] =
∫
X

. . .

∫
X︸ ︷︷ ︸

t times

g(xt )dPxt−1(xt ) . . . dPx(x1).

In practice, the convolutional integral is hard to compute directly. Instead, we 
can leverage sampling methods such as Markov Chain Monte-Carlo (MCMC) to 
approximate the conditional expectation. 

Now we are ready to formulate the game. 

Definition 9 (Decision Dominance Game) A tuple .(X,P, φ, ζ, ψ,T) encapsu-
lates a Decision Dominance Game (DDG) if it satisfies the following: 

• there exists a Markov process .(Xt )0≤t≤T that lives in .(X,G) with transition 
kernel . P, which can be extracted as cyber threats information; 

• .φ, ζ, and . ψ are payoff functions mapping from . Xt to . R, .φ, ζ, ψ ∈ E(X), 
which is the set of all bounded .B(R)/G-measurable functions on .(X,G). Further, 
.min(φ,ψ) ≤ ζ ≤ max(φ,ψ) on . X; 

• at each stage t , both parties pick a stopping strategy from space . Tt := {t ≤ τ ≤
T : {τ(ω) ≤ k} ∈ Fk ∀k ∈ [T ],∀ω ∈ Ω} to decide whether to stop or continue 
the kill/defense chain. 

• at each stage the utility function of the defender is 

. H(τt , σt ) = φ(Xτt )1{τt<σt } + ζ(Xτt )1{τt=σt } + ψ(Xσt )1{τt>σt },

while the attacker attains .−H(τt , σt ). 

Figure 6 gives an example of the DDG outcome. The solution concept of a DDG 
is given in Definition 10. 

Definition 10 (Decision-Dominance Equilibrium (DDE)) A pair of stopping 
time strategies .(τ ∗, σ ∗) ∈ T × T is a Decision-Dominance Equilibrium (DDE) 
if for all initial state .x ∈ X, it satisfies the minimax condition: 

.
V τ∗,σ ∗

(x) = ess supσ∈T ess infτ∈T V τ,σ (x)

= ess infτ∈T ess supσ∈T V τ,σ (x).
(22)
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Fig. 6 An illustration of the cyber kill/defense chain interaction. In this case, at time t , the system 
state has evolved into . Xt , the defender cuts off the chain interaction earlier than the attacker and 
gets payoff .φ(Xt ), while the attacker gets .−φ(Xt ) since she plans to stop at the next time step 

The existence of such a value function, however, is a non-trivial question, as we 
are looking for a pure strategy Nash equilibria in an infinite-dimensional space (. T×
T), Von-Neumann’s Minimax theorem does not apply here. However, under certain 
conditions, we are able to show that a DDG with information symmetry always 
admits a value function, which is unique up to a state-wise constant translation. 

We know from Dynkin’s result [78] that when .φ ≤ ζ ≤ ψ on .x ∈ X, there exists 
a value process 

.

Vt = min{ψ(Xt),max{φ(Xt),E[Vt+1|Ft ]}}
= max{φ(Xt),min{ψ(Xt),E[Vt+1|Ft ]}},

(23) 

and the equilibrium strategies capture . Vt ’s hitting times of the upper/lower limits. 
However, the ordered-payoff assumption is hard to verify in the context of MDW, 
a more reasonable assumption, as has been discussed before, is . min(φ,ψ) ≤ ζ ≤
max(φ,ψ) on . X. In addition, the ubiquitous information asymmetry in cyberspace 
oftentimes makes the derived equilibrium strategies inapplicable. 

Therefore, in the sequel, we dive into the more general case defined as in Defi-
nition 9, and lay out some essential analytical characterization for the equilibrium 
value process; further, we give a rough description for the case under information 
asymmetry. 

6.2 Equilibrium Strategies for D3 

In this section, we investigate the existence and characterization of the DDE in 
two different cases under a symmetric information structure and then discuss an
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extension. The first case is when the early termination payoff . φ dominants the late 
termination payoff . ψ , which we call adversarial dominance, as in this case, the 
outcome of engaging in the long term favors the adversary. The second case is 
called defense dominance, where the late termination payoff . ψ dominates the early 
termination payoff . φ. Hence, the defender is able to endure the kill/defense chain 
interactions longer than the adversary does. 

6.2.1 Case I: Adversarial Dominance 

Under the Adversarial Dominance Condition (ADC), the payoff functions satisfy 
the ordered condition .ψ ≤ ζ ≤ φ for all system states .x ∈ X. In this case, at any 
state .x ∈ X, the defender aims to investigate the kill chain for a proper period of 
time while trying to terminate the operations faster than the attacker, as it is more 
costly to wait for the attacker to exploit the vulnerabilities by doing Command & 
Control than to shut down the service and reset the credentials. This is also called 
first-mover advantage, that is, the defender has the incentive to end the game faster 
than the opponent. 

We shall proceed with the analysis by giving a constructive sequence of equilib-
rium values. To this end, we investigate the .t ∈ [T ] stage problem through backward 
induction and let .{V t

n}tn=0 be the equilibrium processes attained by stopping at no 
more stage t . At  .t ∈ [T ], both parties have to choose confrontation, thus at the 
final stage, the payoff is .ζ(Xt ); at  .n ∈ [t − 1]. They either both stop and get 
payoff value .ζ(Xn), or wait for the next round, in which case the defender has to 
judge if the termination values .φ(Xn) is higher than the expected engaging values 
.E

[
V t

n+1|Fn

]
, given that the attacker chooses to engage. Mathematically, we have 

the value processes for arbitrary .t ∈ [T ], 

.

V t
t = ζ(Xt ),

V t
n = val

[
ζ(Xn) φ(Xn)

ψ(Xn) E
[
V t

n+1|Fn

] ]
, for n = t − 1, . . . , 0.

(24) 

where .val(·) stands for a special value operator of the matrix game, which we 
interpret as: 

. V t
n =

{
E

[
V t

n+1|Fn

]
if φ(Xn) < E

[
V t

n+1|Fn

]
,

ζ(Xn) otherwise .

It turns out that the value processes possess the monotone property (Lemma 1). 

Lemma 1 For every .n, t ∈ [T ] such that .n ≤ t , one has that the equilibrium value 
processes defined as in (24) satisfy 

.V n
n ≤ V t

n ≤ V t+1
n .
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One can show Lemma 1 with an induction argument. Let the event . En := {ω :
φ(Xn) < E[ζ(Xn+1)|Fn]} be when the next round expected confrontational payoff 
is higher than the current early termination payoff. Consider the base case; it follows 
that at any stage .t ∈ [T − 1], since the next round both parties need to terminate, it 
is reasonable for the defender to choose to terminate if the early termination payoff 
is higher than the expected confrontational payoff. Thus, 

. V t+1
t =

{
E[ζ(Xt+1)|Ft ] on Et,

ζ(Xt ) on Ec
t ,

≥
{

φ(Xt ) on Et,

ζ(Xt ) on Ec
t ,

≥ ζ(Xt ) = V t
t .

Now we assume that .V j+k−1
j ≤ V

j+k
j for some arbitrary stage . 1 ≤ k ≤ T − 1

and for all .j ∈ [T − k], then, for .t ∈ [T − k − 1], 

. 

V t+k
t = val

[
ζ(Xt ) φ(Xt )

ψ(Xt ) E
[
V t+k

t+1 |Ft

]]

≤ val

[
ζ(Xt ) φ(Xt )

ψ(Xt ) E
[
V t+k+1

t+1 |Ft

]]

= V t+k+1
t .

Hence, the monotonicity follows by the induction argument. 
That . V t

k being increasing in t gives off two signals; the first is that due to 
the Monotone Convergence theorem for .E[·|Ft ], there exists a limit for . V t

k if we 
consider the infinite-stage problem (.t → ∞); the second is that the dominating 
strategy can be obtained when the stopping stage is not constrained, up to time T . 

Now we define two stopping times, for .t ∈ [T ], 

. ̄τt = inf{t ≤ k ≤ T |V T
k = ζ(Xk)},

σ̄t = inf{t ≤ k ≤ T |V T
k = ζ(Xk)}.

The significance of .(τ̄t , σ̄t ) is given in Theorem 1. 

Theorem 1 Under ADC, the following statements hold for arbitrary initial state 
.x ∈ X: 
(i) For every .t ∈ [T ], and all .τ ∈ Tt , σ ∈ Tt , 

.E[H(τ, σ̄t )|Ft ] ≤ V T
t = E[V T

τ̄t∧σ̄t
|Ft ] = E[H(τ̄t , σ̄t )|Ft ] ≤ E[H(τ̄t , σ )|Ft ].
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(ii) At every time .t ∈ [T ], a pair .(τ̄t , σ̄t ) is an equilibrium point for that time step 
t , and a DDE value corresponding to .(τ̄0, σ̄0) is given as 

. E[V T
0 ] = E[V T

τ̄0∧σ̄0
] = E[H(τ̄0, σ̄0)].

Proof Fix a .t ∈ [T ] arbitrarily. We have that, if .k ∈ {t, . . . , σ̄t }, by definition of . σ̄t , 
we have 

. V T
k = E[V T

k+1|Fk].

Thus, the sequence .{V T
k∧σ̄t

, k ≥ t} is a regular Martingale, so that . V T
t = E[V T

τ∧σ̄t
|Ft ]

for any .τ ∈ Tt , by Doob’s optional sampling theorem. Since . V T
σ̄t

= ζ(Xσ̄t ) ≥
ψ(Xσ̄t ), if .σ̄t ≤ ∞ and .V T

k ≥ φ(Xk) if .σ̄t > k, it follows  that:  

. V T
t = E[V T

τ∧σ̄t
|Ft ]

= E[V T
τ 1{τ<σ̄t } + V T

σ̄t
1{σ̄t≤τ }|Ft ]

≥ E[φ(Xτ )1{τ<σ̄t } + ψ(Xσ̄t )1{σ̄t<τ } + ζ(Xσ̄t )1{σ̄t=τ }|Ft ]
= E[H(τ, σ̄t )|Ft ].

Applying the same argument we are able to prove the . ≤ side for all .σ ∈ Tt . By  
letting .t = 0 we arrive at the conclusion. ⨅⨆

Theorem 1 (i) implies that for every subgame starting from time t , the equilib-
rium strategy is always a threshold strategy for both parties, where the threshold 
needed to be computed is .E[V T

t+1|Ft ]. Both parties would only have incentives to 
stop when .φ(Xt) is hitting the threshold. ii) states that in the adversarial dominance 
environment, .(τ̄0, σ̄0) are the equilibrium strategies. However, the determination of 
the equilibrium value sequence .V T

t is computationally intractable, as one would 
have to construct the random variables backwardly according to (24), enumerating 
over the filtration sets. 

Therefore, it is crucial to generalize the above arguments to the space of 
.E(X). As we may assume that the players have access to the payoff functions, 
constructing a map between . Xt and the equilibrium value process can be relatively 
easier. Indeed, due to the Markovian property of . Xt , it turns out we only need 
a sequence of .B(R)/G-measurable value functions .{vt (·)}t∈[T ] that satisfies the 
following conditions: 

.

vT (x) = ζ(x), for all x ∈ X,

vt (x) ∈ SE

[
ζ(x) φ(x)

ψ(x) 𝒯vt+1(x)]
]

, for all x ∈ X, t ∈ [T − 1],
(25)
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where . SE stands for the set of Nash (saddle-point) equilibrium values of the 
matrix game with two pure strategies. Then, the last iterate value function is . ζ(·)
by construction. The rest of the business is to figure out the backward induction 
equation that involves the .val(·) operator, which still relies on the calculation of 
. 𝒯 leveraging Monte-Carlo sampling type of methods. Following Lemma 1 the 
monotonicity still holds, .{vt (·)}t∈[T ] is decreasing, which can be interpreted as that 
the decision made at the outset is most valuable, as time passes, the opportunity 
fades. For any .t ∈ [T ], we define the two stopping times, 

. τ ∗
t = inf{t ≤ k ≤ T |{vk(Xk) = ζ(Xk)}

⋃
{vk(Xk) = φ(Xk)}},

σ ∗
t = inf{t ≤ k ≤ T |{vk(Xk) = ζ(Xk)}

⋃
{vk(Xk) = ψ(Xk)}}.

By Theorem 2, .(τ ∗
0 , τ ∗

0 ) is the equilibrium strategy pair, the definition of which 
reflects the consistency of value function computation, that is, the players’ current 
value estimates either reach the early termination threshold or confrontational 
threshold. 

Theorem 2 Under ADC, the following statements hold for arbitrary initial state 
.x ∈ X: 
• for every .t ∈ [T ], and all .τ ∈ Tt , σ ∈ Tt , 

. E[H(τ, σ ∗
t )|Ft ] ≤ E[H(τ ∗

t , σ ∗
t )|Ft ] ≤ E[H(τ ∗

t , σ )|Ft ].

• the game admits a DDE strategy .(τ ∗
0 , σ ∗

0 ), at which the value function satisfies 

. 
Vτ∗

0 ,σ ∗
0 (x) = ess supτ∈Tess infσ∈TV

τ,σ (x)

= ess infσ∈Tess supτ∈TV
τ,σ (x).

We omit the proof here as Theorem 2 can be seen as an extension of Theorem 1, 
to which the reasoning is similar. One can simply construct the sequence of value 
functions with a constant translation, and the results still hold. 

6.2.2 Case II: Defensive Dominance 

Under the Defensive Dominance Condition (DDC), the payoff functions satisfy 
the ordered condition .ψ ≤ ζ ≤ φ for all system states .x ∈ X. In this case, at 
any state .x ∈ X, the defender can bide his time during the interactions of cyber 
kill/defense chain, as the systematic loss after the execution of Command & Control 
is mitigable. Such a condition happens when the defender possesses a superior and 
robust position. This is also called second-mover advantage, that is, the defender 
has the incentive to wait for the opponent to end the game.
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DDC corresponds to the ordered payoff condition for standard Dynkin’s game, 
where the existence and uniqueness of a saddle point value process have been 
proved. The constructive sequence of (locally integrable) random variables .{Vt }Tt=0, 
in this case, is now more straightforward (as discussed in [78]), defined by 

.

VT = ζ(XT ),

Vt = min{ψ(Xt),max{φ(Xt),E[Vt+1|Ft ]}}, for t = 0, . . . , T − 1,
(26) 

with the stopping time strategies defined as 

. 
τ̄t = inf{t ≤ k ≤ T |Vk = φ(Xk)},
σ̄t = inf{t ≤ k ≤ T |Vk = ψ(Xk)}.

Theorem 3 Under DDC, the following statements hold: 

(i) for each .t ∈ [T ], and for all .τ ∈ Tt , .σ ∈ Tt , 

. Vt = E[Vτ∗
t ∧σ ∗

t
|Ft ] = E[H(τ ∗

t , σ ∗
t )|Ft ], and,

E[H(τ, σ ∗
t )|Ft ] ≤ Vt ≤ E[H(τ ∗

t , σ )|Ft ].

(ii) at every time .t ∈ [T ], a pair .(τ ∗
t , σ ∗

t ) is an equilibrium point for the subgame 
starting at time t , and the DDE value corresponding to .(τ ∗

0 , σ ∗
0 ) is 

. E[V0] = E[Vτ∗
0 ∧σ ∗

0
] = E[H(τ ∗

0 , σ ∗
0 )].

Proof Similar to previous results, we shall give the proof for the “. ≥” side. First, we 
examine the trivial case where .t = T . Obviously, there’s no option but stop for both 
parties, so .Gt = ζ(Xt ) = E[Gτ∧σ ∗

t
|Ft ] = E[H(τ, σ ∗

t )|Ft ] for all .τ ∈ TT = {T }. 
Fix a .t < T . Choose some k such that .t ≤ k ≤ τ ∗

t ∧ σ ∗
t , we have  . Vk =

E[Vk+1|Fk] by definition. Thus, .{Vk∧τ∗
t ∧σ ∗

t
}Tk=t is a Martingale. Applying Doob’s 

optional sampling theorem, one has 

. Vt = E[Vτ∧τ∗
t ∧σ ∗

t
|Ft ], for all τ ∈ Tt .

Let .τ = τ ∗
t , we arrive at 

.Vt = E[Vτ∗
t ∧σ ∗

t
|Ft ]

= E[Vτ∗
t
1{τ∗

t ≤σ ∗
t } + Vσ ∗

t
1{τ∗

t >σ ∗
t }|Ft ]

= E[φ(Xτ∗
t
)1{τ∗

t <σ ∗
t } + ψ(Xσ ∗

t
)1{τ∗

t >σ ∗
t } + ζ(Xτ∗

t
)1{τ∗

t =σ ∗
t }|Ft ]

= E[H(τ ∗
t , σ ∗

t )|Ft ].



68 T. Li et al.

It is also obvious that when .t ≤ k < σ ∗
t , then .Vk < ψ(Xk), therefore 

.Vk = E[Vk+1|Fk]. This implies that .{Vk∧σ ∗
t
}Tk=t is a supermartingale. Hence, 

.Vt ≥ E[Vτ∧σ ∗
t
|Ft ] for all .τ ∈ Tt , 

. E[Vτ∧σ ∗
t
|Ft ] ≥ E[φ(Xτ )1{τ<σ ∗

t } + ψ(Xσ ∗
t
)1{τ∗

t >σ ∗
t } + ζ(Xτ )1{τ=σ ∗

t }|Ft ]
= E[H(τ, σ ∗

t )|Ft ],

since .Vk > φ(Xk) and .ζ(Xk) ≤ ψ(Xk) for all .0 ≤ k ≤ T . Claim (ii) follows 
immediately. 

⨅⨆
Again we generalize the result to .E(X), we wish to find a sequence of .B(R)/G-

measurable functions .{vt (·)}t∈[T ] that satisfies the following conditions (or being 
shifted by a constant): 

. 
vT (x) = ζ(x), for all x ∈ X,

vt (x) = min{ψ(x),max{φ(x),𝒯vt+1(x)}}, for all x ∈ X, t = [T − 1],

and the DDE pair .(τ ∗, σ ∗) can be defined as: 

. 
τ ∗ = inf{k ∈ [T ]|vk(Xk) = φ(Xk)},
σ ∗ = inf{k ∈ [T ]|vk(Xk) = ψ(Xk)}.

Theorem 4 Under ADC, the game admits a DDE strategy pair .(τ ∗, σ ∗), such that 

. 
Vτ∗,σ ∗

(x) = ess supτ∈Tess infσ∈TV
τ,σ (x)

= ess infσ∈Tess supτ∈TV
τ,σ (x),

for all .x ∈ X. 
Under DDC, the optimal strategies for the players are waiting for the equilibrium 

process to hit the lower/upper bound of the payoff values. 

6.2.3 Decision Dominance with Information Asymmetry 

In the MDW scenarios, it is crucial to recognize that both defenders and attack-
ers operate within an environment of information asymmetry [11, 38]. This is 
particularly evident when considering STIX logs, as the information accessible 
to attackers differs from what defenders can observe. While defenders have the 
advantage of comprehensive logs that capture security events and indicators of 
compromise, attackers possess their own set of advantages stemming from their 
ability to exploit the gaps in the defender’s knowledge. Attackers can leverage their 
insider information, external reconnaissance, and targeted intelligence gathering to
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gain insights into the defender’s security measures, potential vulnerabilities, and 
defensive capabilities. In the meantime, the defender may have deceptive defense 
mechanisms that hide their tactics, techniques, and procedures (TTPs), to counteract 
the malicious exploitation. 

To formalize the notion, we redefine .(Xt )
T
t=0 as the true system state (which 

cannot be completely captured by the STIX logs), and let . (Oi
t )0≤t≤T (i = 1, 2)

be the observation process for the defender (.i = 1) and the attacker (.i = 2), 
which jointly live in the space .(O1 × O2,H1 ⊗ H2), adapted to the filtrations 
.H

1 = (H1
t )0≤t≤T and .H2 = (H2

t )0≤t≤T . This information asymmetry enables 
the players to make informed decisions regarding their strategies, tactics, and the 
selection of attack vectors/defensive mechanisms. Therefore, defenders must not 
only rely on STIX logs and robust defense mechanisms but also proactively bridge 
the information gap by enhancing their threat intelligence capabilities, anticipating 
adversary behaviors, and continuously evolving their defense strategies to counter 
the advantages of information asymmetry in the cyber landscape. 

To formally define the DDG under asymmetric information structure, we denote 
by .T(Hi ) the set of .Hi-stopping times, . T(Hi ) = {0 ≤ τ ≤ T : {τ(ω) ≤
k} ∈ Hi

k ∀k ∈ [T ],∀ω ∈ Ω}. The decision payoffs at each stage .t ∈ [T ], 
in this case, may depend on both . Oi

t and . Xt . Following the standard formalism 
of the Partially Observable Markov Decision Process (POMDP), we assume that 
the payoff functions still only depend on the true system state, which is a hidden 
latent variable for both players. Instead, there exists an emission kernel . O : X →
Δ(O1×O2) that measures the joint probability of observations made by the defender 
and the attacker. An illustration is shown in Fig. 7 

Factorization Lemma says in order to infer the true states from the partial 
observations, say, if .O1

t is . Ft /.H1
t -measurable, there needs to be a deterministic 

. Ft /.H1
t -measurable map .f : X → O1 such that .O1

t = f (Xt ), whose existence 
and accessibility are not always guaranteed in the cyber domain. Therefore, it is 
reasonable to assume that the players have their stopping time strategies restricted 
to .T(Hi ). Definition 11 summarizes the game under asymmetrical information 
structure. 

Definition 11 (Decision Dominance Game with Information Asymmetry) A 
tuple .(X,O1 × O2,P,O, φ, ζ, ψ,T(H1),T(H2)) encapsulates a Decision Domi-
nance Game with Information Asymmetry (DDGIA) if it satisfies that 

• There exists a hidden Markov process .(Xt )0≤t≤T that lives in .(X,G) with 
transition kernel . P, which yields observations .(O1

t , O2
t ) through emission kernel 

. O; 
• .φ, ζ, and . ψ are payoff functions mapping from . Xt to . R, .φ, ζ, ψ ∈ E(X), 

which is the set of all bounded .B(R)/G-measurable functions on .(X,G). Further, 
.min(φ,ψ) ≤ ζ ≤ max(φ,ψ) on . X; 

• At each stage t , player i (.i = 1, 2) picks a stopping strategy from space 
.Tt (H

i ) := {t ≤ τ ≤ T : {τ(ω) ≤ k} ∈ Hi
k ∀k ∈ [T ],∀ω ∈ Ω} to decide 

whether to stop or continue the kill/defense chain.
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Fig. 7 An illustration of asymmetric information dynamic games defined in Definition 11. The  
two players have distinct partial observations for the system state . Xt , denoted by .(O1

t , O2
t ). In  

DDG, the defender has to infer the true state to determine the stopping time strategy based on 
the payoff structure, which relies on credible modeling, requiring expertise in the fundamental 
understanding of the cyber threats 

• At each stage the utility function of the defender is 

. H(τt , σt ) = φ(Xτt )1{τt<σt } + ζ(Xτt )1{τt=σt } + ψ(Xσt )1{τt>σt },

while the attacker attains .−H(τt , σt ). 

The goal of the defender is to choose . τ to maximize her utility under all possible 
choices of the attacker, which leads to the lower value function of DDGIA, 

.V (x) = ess sup
τ∈T(H

1
)
ess inf

σ∈T(H
2
)
V τ,σ (x). (27) 

Similarly, the goal of the attacker is to choose . σ to minimize the defender’s utility 
under all possible choices of the defender, which leads to the upper-value function, 

.V (x) = ess inf
σ∈T(H

2
)
ess sup

τ∈T(H
1
)
V τ,σ (x). (28) 

Definition 12 (DDE with Information Asymmetry) A pair of stopping time 
strategies .(τ ∗, σ ∗) ∈ T(H1) × T(H2) is a Decision-Dominance Equilibrium (DDE) 
if for all initial state .x ∈ X, it satisfies the minimax condition:
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.

V τ∗,σ ∗
(x) = ess sup

σ∈T(H
2
)
ess inf

τ∈T(H
1
)
V τ,σ (x)

= ess inf
τ∈T(H

2
)
ess sup

σ∈T(H
2
)
V τ,σ (x).

(29) 

We say that a DDGIA has a value if .V (x) = V (x). Note that the existence and 
uniqueness of the value is a non-trivial question in general, as we shall find the 
reasoning presented in the previous section not applicable due to the introduction 
of two private filtrations for both parties. In principle, the value exists if . Hi reveal 
the same information from . F, in which case the conditional expectation .E(·|Hi

t ) can 
be seen equivalent with .E(·|Ft ), thus the players will make their decisions using the 
same threshold policies. This property, however, requires some special structures of 
the observation kernel . O, which might not hold in realistic scenarios. 

6.3 Decision Dominance Zero-Trust Defense (DD-ZTD): A 
Case Study 

In this case study, we consider an T -episodic DDG with symmetric information 
over the same 5G network .G = 〈V,E〉 as discussed in Sect. 5.2, where each 
episode t contains H ZTD steps against lateral movement. The ZTD state action 
variables within one episode t is .sat = (s1t , a1t , s

2
t , a2t . . . , aH−1

t , sH
t ), where . sh

t =
(Gh

t , L
h
t ), h = 1, . . . , H are the authentication graphs and the visiting indicator 

functions at episode t , and the joint actions . ah
t are automated by the threshold-

policy trust engine, which is either the Bayesian type or the Machine Learning type. 
Denote the STIX logs within t as .xt ∈ X, which includes but is not limited to 
the events of 5G network exposure, slicing control, session management; the threat 
actor characterizations such as suspected user intentions and handling guidance. The 
Markovian state at episode t is a composition of both historical ZTD state action 
variables and the STIX logs gathered before episode t , i.e., .Xt := (sa1:t−1, xt−1). 

During the cyber kill/defense chain interaction, at the beginning of each episode, 
the defender can choose to completely cut off the chain before episode t starts by 
isolating the networks, restarting the services, resetting all the credentials, patching 
and hardening the security configurations, and then restoring and resuming the 
operations. The cost of the defender’s cutting-off strategy is .C(·) : X → R, which 
only depends on the cyber threat information. Similarly, the attacker can choose to 
take action early by exploiting Zero-Day vulnerabilities, evading intrusion detection 
systems, and implementing stealthy command and control at an early stage of the 
cyber kill chain. Again we let the exploitation loss be .𝓁(·) : X → R, which 
completely depends on the cyber threat characterization of episode t . Now  we  are  
ready to define the three payoff functions in our DDG framework. 

The early termination payoff, confrontation payoff, and late termination payoff 
functions can be defined as
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.

φ(Xt ) = −E[
t−1∑
k=1

H∑
h=1

uD(sh
k , ah

k )] − C(xt−1),

ζ(Xt ) = −E[
t−1∑
k=1

H∑
h=1

uD(sh
k , ah

k )] − C(xt−1) − 𝓁(xt−1),

ψ(Xt ) = −E[
t∑

k=1

H∑
h=1

uD(sh
k , ah

k )] − 𝓁(xt−1),

(30) 

where the expectation .E[∑H
h uD(sh

t , ah
t )] is taken conditioned on .sa1:t−1. The  

interpretation is that when the defender chooses to shut down and restore the 
services, the ZTD stops for that episode, while if the attacker chooses to exploit 
early, the ZTD mechanism is still active. 

One can easily verify that when both . 𝓁 and C are positive and the expected 
ZTD cost within every episode t satisfies .E[∑H

h uD(sh
t , ah

t )] > C(xt−1) the DDG 
satisfies DDC. 

7 Conclusion 

This chapter develops a game-theoretic framework for the decision-dominant zero-
trust defense of 5G networks in the face of advanced persistent threats that utilize 
a cyber kill chain to disrupt the network operation. The advanced features of 5G 
networks, despite their contributions to multi-domain integration, bring a larger 
attack surface and render the network system vulnerable in the presence of advanced 
persistent threats (APT) and other malicious attacks. The combination of system 
vulnerabilities, supply chains of 5G equipment, and network slicing, along with 
others, can be exploited by an APT attacker to create a cyber kill chain consisting 
of reconnaissance, planning, execution, and exploration. 

To outmaneuver the malicious attacker and thwart the kill chain, this chapter 
proposes a decision-dominant zero-trust defense (DD-ZTD) framework, a proactive 
defense mechanism enabling the defender to make timely and effective decisions 
with incomplete information regarding the situation and disrupt the kill chain before 
its completion. Two pillars of DD-ZTD are game-theoretic zero-trust defense built 
upon asymmetric information Markov games (AIMG) and decision-dominance 
defense characterized by Dykin’s stopping-time games. With the AIMG’s expres-
sive power on information structures in cyber defense, ZTD employs a variety of 
trust engines to evaluate entities’ trustworthiness with limited partial observations, 
which is then fed into the access policy powered by equilibrium thinking that 
anticipates the attacker’s response. We further present an end-to-end ZTD facilitated 
by recent machine learning advancements with data-driven trust evaluation and 
explainable and generalizable policy learning.
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While the proposed ZTD offers a set of fruitful tools to quantitatively analyze 
trustworthiness under information asymmetry, the networked entities still face 
multi-stage persistent cyber threats that call for rapid response from the defender. To 
outpace the attacker’s kill chain, decision-dominance defense (D. 3), mathematically 
treating interactions of cyber defense/kill chain as a stopping-time game, aims to 
take the decisive move to cut off the kill chain before the attack materializes. The 
essence of D. 3 is the timing of the cutting-off, which is determined by the equilibrium 
of the game with anticipation of the attacker’s strategic move. The resulting DD-
ZTD, as an organic integration of the two game-theoretic defense mechanisms, 
displays great potential in combating sophisticated adversaries, which we articulate 
using a case study in 5G network defense. 
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1 Introduction 

The ever-growing world of interconnected devices and networks has catalyzed the 
rapid expansion of modern cyber attack surfaces. The new and rapidly evolving 
threat landscape can no longer be protected with basic network monitoring and 
analysis tools and traditional network intrusion detection systems. Despite signif-
icant and decades of research and development efforts, network intrusion detection 
systems still fall short when it comes to improving detection accuracy, minimizing 
false alarm rates, and detecting novel (zero-day) intrusions. As a result, artificial-
intelligence (AI) and machine learning (ML) is increasingly becoming the focal 
point of many advancements in network intrusion detection systems. 

AI/ML looks very promising with the potential to aid a small group of network 
analysts in a swift response to the myriad of sophisticated network attacks. On the 
other hand, in an effort to counter AI/ML driven network security and to evade 
detection, adversaries have engaged in new and never before seen attacks against the 
AI/ML models in network intrusion detection systems. Such attacks are commonly 
referred to as adversarial ML. There are various categories of adversarial ML 
attacks, and one such recent attack is the Clean-Label Poisoning attack [11, 48, 51]. 
The key objective of the adversary here is to evade detection. The evasion attack 
occurs at test time (i.e., real-time), while the Clean-Label poisoning attack occurs 
during training. Such failure to protect AI/ML based systems will cause adversarial 
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attacks to go unnoticed. Therefore, the defense (i.e., security) of machine learning 
based network intrusion detection systems is in and by itself very critical. 

The defense of AI/ML systems have been considered in many other fields, 
such as image recognition. However, these defenses are specific to the field of 
image recognition and may not transfer to a network security context. The space 
that machine learning operates is referred to as the feature space, which is a 
representation of the problem space. For example, an actual image is considered the 
problem space and is transformed to the feature space as a matrix of pixel intensities. 
In the image domain there is an obvious inversion from the feature space back to the 
problem space. The network domain represents network flows (problem space) as a 
vector of features (e.g., statistical properties). 

Conversely, in the network domain, there is not an obvious inverse from the 
feature space back to the problem space. Additionally, there is a lack of emphasis 
on the defense of traditional machine learning systems such as support vector 
machine (SVM), Random Forest, and Gradient Boosting, which are favored in the 
network intrusion detection domain. Our work proposes the use of ensembles as a 
defense against adversarial machine learning attacks on network intrusion detection 
systems. We believe a hierarchical, stacked, and nested ensemble will provide 
robust protection to machine learning based network intrusion detection systems. 
Additionally, unlike most previous work that have evaluated the security of AI/ML 
systems from the perspective of adversarial ML, we evaluate security of AI/ML 
systems from an end-to-end perspective that accounts for vulnerabilities in software 
dependencies and supply chain and discusses the need for a vulnerability disclosure 
program in AI/ML. 

As AI/ML capabilities become more powerful and widespread, new attacks will 
stem from the use of AI/ML systems designed to complete extremely challenging 
tasks that would be otherwise impractical for humans. With the rapidly evolving 
state of the modern cyber attack surface it is realistic to expect attacks enabled by the 
growing use of AI/ML systems to be very effective as they can be precisely targeted 
making it very challenging to attribute [7]. At the intersection of cybersecurity and 
AI/ML attacks, authors highlight the need to explore and potentially implement red 
teaming, formal verification and responsible disclosure of AI/ML vulnerabilities 
among other things. 

AI/ML systems have both civilian and military applications, and more impor-
tantly, toward both beneficial and harmful ends. Since some tasks that require 
intelligence are benign and other malicious, AI is a double-edge sword just 
like human intelligence is and therefore great caution has to be exercised when 
developing AI/ML systems. There is a large void in the domain of defense of 
AI/ML systems. Without adequate research and development of defenses, progress 
in AI/ML will only make matters worse. This can manifest through expansion of 
existing threats, introduction of new threats, or alteration of the typical character of 
threats.
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1.1 Chapter Roadmap 

The remainder of this chapter is organized as follows. Section 2 reviews network 
intrusion detection specifically focusing on the previously used basic network 
monitoring and analysis tools and techniques (Sect. 2.1) and discuss the traditional 
network intrusion detection systems (Sect. 2.2). Section 2.3 discusses the AI/ML 
driven advanced network intrusion detection systems. Section 3 presents discussions 
related to AI/ML systems’ vulnerabilities. Section 4 presents discussions on the 
intersection of security and AI/ML. Specifically, Sect. 4.1 reviews employing 
AI/ML systems for Network security considerations and Sect. 4.2 discusses security 
considerations for building and deploying robust AI/ML systems. Finally, Sect. 5 
concludes the paper with directions for future research. 

2 Network Intrusion Detection Systems 

The process of collecting, storing, and examining network traffic by dissecting 
the data packets that make up network traffic is commonly referred to as network 
traffic analysis. Network traffic analysis is a highly sophisticated process that often 
combines multiple techniques ranging from a simple static technique as rule-based 
detection to highly dynamic and adapting techniques like behavior modeling and 
Machine Learning. The primary objective of network traffic analysis is to establish a 
normal network operations behavior. A good baseline is vital to effective and timely 
detection and isolation of outliers. Therefore, for improved real-time situational 
awareness, network traffic analysis techniques should gather traffic in or near to 
real-time. However, data can be stored for advanced analysis referred to as Deep 
Packet Inspection (DPI). Figure 1 presents a broad classification of IDSs. In this 
section, we briefly discuss the basic network monitoring and analysis techniques in 
literature. 

Fig. 1 Classification of IDS systems
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2.1 Basic Network Monitoring and Analysis 

With Network traffic monitoring and analysis, like with most cybersecurity solu-
tions, one size does not fit all. The specific type of network traffic analysis solution 
deployed should meet the security requirements of the target network. A good 
Network traffic analysis solution can help detect anomalies in traffic pattern that 
can be an indicator of compromise (IOC) or malfunctioning network infrastructure 
component. 

In [9], authors provide categorization of network traffic monitoring and analysis 
techniques into the following two techniques: 

• Router-based techniques—techniques that utilize monitoring functionalities 
built-into the routers themselves. These techniques do not require installation 
of additional hardware or software. However, these techniques are hard-coded 
into the routers and therefore offer little flexibility. Some of the most popular 
router based network traffic monitoring and analysis techniques include: Simple 
Network Monitoring Protocol (SNMP), Remote Network Monitoring (RMON), 
and Netflow. 

• Non Router-based techniques—are techniques that require installation of 
additional hardware and software. These monitoring techniques provide greater 
flexibility compared to router-based techniques and can be broadly classified 
into two categories: Active and Passive. Active monitoring technique transmits 
probes into the network to collect measurements between two or more endpoints, 
and tools such as ping and traceroute are examples of basic active measurement 
tools that fall into this category. Passive monitoring, on the other hand, does not 
inject traffic into the network. Instead, it passively collects information about 
only one point, unlike active monitoring that involves two or more endpoints, in 
the network that is being measured. A key advantage of passive monitoring over 
active monitoring is that the overhead is significantly lower compared to active 
monitoring. However, it does have a major drawback. Unlike active monitoring, 
data gathered through passive monitoring can only be analyzed off-line. 

Another important consideration for effective Network traffic analysis is the data 
sources for your network monitoring tool. Two of the most popular data sources, 
which also happen to be the most popular techniques, for Network traffic analysis 
are captured in Fig. 1 and discussed below: 

• Packet data—packet data capture typically involves capturing network packets 
using a mirror port. The captured data is simply a mirror image of the network 
packets. Packet data is better suited for application and user behaviour analysis. 
However, caution should be exercised when configuring a mirror port since they 
can easily get overloaded on a busy network. The most popular packet based 
intrusion detection systems are Bro [40] and Snort [42]. 

• Flow data—A network flow is a set of packets with the same characteristics 
passing through a specific observation point over a period of time [50]. Flow 
data based analysis provides excellent visibility on the traffic traversing across
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different parts of the network. Capturing flow data is fairly simple to setup on 
devices which operate at layer 3 as it requires no software clients or agents on end 
user systems. However, the downside is that flow data lacks detail which prevents 
granular view of events. Additionally, flow data based network monitoring is not 
ideal for network edge where applications are encapsulated in other lower layer 
protocols. nfdump [23] is a toolset for storage and processing of flow records. 
Specifically, nfdump is a toolset to collect and process netflow/ipfix and sflow 
data, sent from netflow/sflow compatible devices. The toolset contains several 
collectors to collect flow data. Nfsen [24] is a graphical front-end for nfdump. 

In [5], Azab et al. review existing network classification techniques, such as 
port-based identification and those based on deep packet inspection, statistical 
features in conjunction with machine learning, and deep learning algorithms. 
Authors discuss the implementations, advantages, and limitations associated with 
these techniques as well as existing and emerging challenges and future research 
directions. In [49], Zhao et al. categorize traffic classification techniques into the 
following five categories—port-based, payload-based, correlation-based, behavior-
based, and statistical-based. Additionally, Zhao et al. provide analysis of workflow, 
advantages, disadvantages and deployed features for each of the five categories. 

2.2 Traditional NIDS 

In this section we discuss traditional NIDS, i.e., NIDS that are not driven by AI/ML 
models. In [30], authors provide a detailed review on taxonomy of contemporary 
IDS along with an overview of the data-sets commonly used for evaluation purposes. 
Authors also present evasion techniques used by attackers to avoid detection and 
discusses future research challenges to counter such adversary tactics. 

Traditional network monitoring techniques for intrusion detection can be catego-
rized into the following categories: 

1. Signature-based IDS detect attacks based on pattern matching techniques to find 
known attacks. These IDSs often give excellent detection accuracy for intrusions 
that are previously known. Signature-based IDS are also known as Knowledge-
based Detection or Misuse Detection [29]. 

2. Anomaly- or behavioral-based IDS [20] overcomes the limitations of Signature-
based IDS. In contrast to signature-based IDSs, these systems can adapt to 
the evolving threat landscape. However, they do have a major downside— 
false positives generated by accidentally classifying unknown and legitimate 
activity as malicious. As discussed in [1, 30], Anomaly-based IDSs can be 
further classified into three broad categories—Machine Learning-based IDS, 
Statistical-based IDS, and Knowledge-based IDS [37]. We have presented a 
detailed classification of this classification in Fig. 2.
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Fig. 2 Classification of anomaly-based IDS systems 

While not as popular as the above two, there is a third network monitoring 
technique for intrusion detection referred to as Specification-based-detection [31]. 
Authors describe and implement a real-time intrusion detection system using a 
specification-based approach to detect exploitation of vulnerabilities in security-
critical programs. Their proposed specification-based approach utilizes security 
specifications that describe the intended behavior of programs and scans audit trails 
for operations that are in violation of the specifications. Their approach encompasses 
attacks that exploit previously unknown vulnerabilities in security-critical programs. 

2.3 Advanced NIDS with AI/ML 

The advancement of AI has led to vast improvements in fields such as computer 
vision. As such, the cyber security community began to incorporate AI into intrusion 
detection systems and network traffic analysis. In [43] the authors discuss the 
feasibility of the use of ML for network intrusion detection. There are two main 
types of machine learning called, Supervised and Unsupervised. In Supervised 
methods, the model is learned based on the training dataset. In Unsupervised 
methods, there is no need for a training dataset. ML methods for network traffic 
analysis are sometimes referred to as anomaly based or misuse detection. Anomaly 
detection in this context is the identification of abnormal or malicious network 
communications. This implies comparing future network events against a known 
normal baseline to identify anomalous activity. In [43], the authors note that the 
term anomaly detection is used narrowly to refer to detection approaches that rely 
primarily on ML. 

However, many of the ML network traffic classifiers utilize supervised machine 
learning and are composed of samples from both the benign and malicious class. The 
techniques that make up misuse detection is Knowledge-based, Statistical, and ML 
based IDS. Additionally ML-based can be synonymous with AI-based techniques 
which leverage deep learning models.



Artificial Intelligence and Machine Learning for Network Security: Quo Vadis? 85

ML-based models for network traffic analysis examples include leverage Support 
Vector Machine (SVM), Random Forest, Decision Tree, and logistic regression. In 
[27], the authors provide a survey of many of the ML techniques used for network 
traffic analysis. The use of ML in network traffic classification has become an active 
research area. For example, the authors of [17, 26] leverage ML to perform network 
traffic classification tasks. 

3 AI/ML Systems’ Vulnerabilities 

The cybersecurity breach of SolarWinds software is one of the most widespread and 
sophisticated hacking campaigns ever conducted against the federal government and 
private sector.1 With the wide-spread impact and success of Solar-Winds attack, 
the adversary’s attack strategy shifted to prioritize the supply chain instead of 
relying solely the attacker’s arsenal of tools and techniques. It was very clear 
from SolarWinds, wherein a major cybersecurity company’s software was severely 
impacted by a backdoor inserted during the supply chain, that attacking the supply 
chain for scalability, spreading exploits naturally through software upgrades, and 
leveraging trojan behavior to get into target networked systems [47] was a better 
option. 

Like any technology, AI/ML as a technology enabler also has risks that can 
emerge in a variety of ways. NIST Artificial Intelligence Risk Management 
Framework (AI RMF 1.0) categorizes these risks as follows: long- or short-term, 
high or low-probability, systemic or localized, and high- or low-impact [45]. As 
illustrated in Fig. 3, the AI RMF Core is composed of four functions: GOVERN, 
MAP, MEASURE, and MANAGE. 

AI/ML systems present new vulnerabilities compared to traditional enterprise 
and network security solutions having a more complex supply chain and depen-
dency. As shown in Fig. 4, AI/ML systems present potential new vulnerabilities at 
four different stages: data collection, model sourcing, operations tooling, and build 
and development. 

There are myriad ways in which attackers can cause AI/ML systems to behave 
unexpectedly and violate security policies—implicit or explicit. Adversaries may 
target the data sets, algorithms, or models that an ML system uses in order to deceive 
and manipulate their calculations, steal training data, compromise their operation, 
and render them ineffective. For instance, research in speech recognition domain has 
demonstrated the possibility of generating audio that sounds like speech to AI/ML 
algorithms but not to humans. Specifically, in [8], authors demonstrate how a voice 
interface system can be attacked with hidden voice commands that are unintelligible 
to human listeners but which are interpreted as commands by devices. Note that 
attacks can be successful even when the attackers have no access to either the model

1 https://www.gao.gov/. 

https://www.gao.gov/
https://www.gao.gov/
https://www.gao.gov/
https://www.gao.gov/
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Fig. 3 NIST AI risk management framework activities [45] 

Fig. 4 AI/ML supply chain 
vulnerabilities 

or the data used to train it [39]. Microsoft chatbot Tay,2 which started sending racist 
tweets within hours of being launched, is a classic example of data poisoning attacks 
on AI/ML systems. 

AI/ML-systems can be quite easily manipulated, evaded, and misled resulting in 
profound implications, especially for network security and monitoring applications, 
as discussed in [43]. In [10], authors present examples where deep learning

2 https://atlas.mitre.org/studies/AML.CS0009/. 

https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
https://atlas.mitre.org/studies/AML.CS0009/
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methods can be misled by small amounts of input noise crafted by an adversary. 
Authors provide a detailed discussion on different types of adversarial attacks 
with various threat models and also elaborate the efficiency and challenges of 
recent countermeasures against them. Adversarial ML in the domains of image 
classification [33], facial recognition [2, 13, 32], audio deepfakes [28, 38], video 
deepfakes [22, 34], recommendation systems [18, 19], to name a few, are well 
known. 

Finally, AI/ML models have substantial dependencies on software packages 
which makes them vulnerable to supply chain attacks (Fig. 4). One recent supply 
chain vulnerability that was uncovered that potentially impacted a broad spectrum 
on AI/ML tools is the PyTorch-nightly Python package Torchtriton. PyTorch is a 
popular open-source machine-learning framework that is used in applications like 
natural language processing. In December 2023, a security researcher uploaded a 
malicious package with the same name and a higher version of PyTorch-nightly 
dependency Torchtriton to the Python Package Index (PyPI) code repository. This 
subsequently resulted in a dependency confusion. It is important to note that if the 
name of a private package is available on PyPI, an attacker can simply exploit this by 
uploading a malicious package with the same name but with a higher version. This 
will result in a supply chain attack. In this particular case, the malicious version of 
Torchtriton included code that uploads sensitive data from the end-user machine. 

Below is a list of other python packages that are frequently used in AI/ML 
development that have had vulnerabilities with varying levels of security risk. 

1. NumPy—NumPy is a Python library that supports large, multi-dimensional 
arrays and matrices. It also has a large collection of high-level mathematical 
functions to operate on these arrays [25]. Below are some of the notable 
vulnerabilities in the NumPy python library. 

• CVE-2014-1858/1859—NumPy before 1.8.1 allows local users to write to 
arbitrary files via a symlink attack on a temporary file. 

• CVE-2017-12852—Numpy 1.13.1 and older versions is missing input valida-
tion in the numpy.pad function. Consequently, an empty list or ndarray will 
stick into an infinite loop, which can allow attackers to cause a DoS attack. 

• CVE-2019-64463 —NumPy 1.16.0 and earlier uses the pickle Python module 
unsafely that allows remote attackers to execute arbitrary code via a crafted 
serialized object. 

• CVE-2021-334304 —A Buffer Overflow vulnerability exists in NumPy 1.9.x 
in ctors.c when specifying arrays of large dimensions from Python code. This 
can be exploited by a malicious user to cause a Denial of Service. 

• CVE-2021-34141—An incomplete string comparison in the numpy.core com-
ponent in NumPy before 1.22.0 allows attackers to trigger slightly incorrect 
copying by constructing specific string objects.

3 Note: This is a disputed CVE. 
4 See footnote 3. 
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• CVE-2021-414955 —Null Pointer Dereference vulnerability exists in 
numpy.sort in NumPy 1.19 due to missing return-value validation in the 
PyArray_DescrNew function. This allows a malicious user to conduct DoS 
attacks by repetitively creating sort arrays. 

2. scikit-learn (sklearn)—sklearn is a free machine learning library for the Python 
programming language [41]. 

• CVE-2020-289756 —svm_predict_values in svm.cpp in Libsvm v324, as used 
in scikit-learn 0.23.2 and other products, allows attackers to cause a denial of 
service (segmentation fault) via a crafted model SVM (introduced via pickle, 
json, or any other model permanence standard) with a large value in the 
_n_support array. 

• CVE-2020-130927 —sklearn through 0.23.0 can unserialize and execute com-
mands from an untrusted file that is passed to the joblib.load() function. 

3. Natural Language ToolKit (NLTK)—NLTK is a framework and suite of 
libraries for developing both symbolic and statistical Natural Language Process-
ing (NLP) in Python. NLTK support different ML operations like classification, 
parsing, and tokenization functionalities. Below are notable NTLK vulnerabili-
ties. 

• CVE-2021-43854—Versions prior to 3.6.5 are vulnerable to regular expres-
sion denial of service (ReDoS) attacks. 

• CVE-2021-3828/3842—vulnerable to Inefficient Regular Expression Com-
plexity 

• CVE-2019-14751—Downloader before 3.4.5 is vulnerable to a directory 
traversal, allowing attackers to write arbitrary files via a ../ (dot dot slash) 
in an NLTK package (ZIP archive) that is mishandled during extraction. 

4. Pandas—pandas is a python library for data manipulation and analysis. In 
particular, it offers data structures and operations for manipulating numerical 
tables and time series. 

• CVE-2020-130918 —pandas through 1.0.3 can unserialize and execute com-
mands from an untrusted file that is passed to the read_pickle() function, if 
__reduce__ makes an os.system call. 

5. Tensor Flow9 —TensorFlow is a free and open-source software library for 
AI/ML. It can be used across a range of tasks but has a particular focus on training 
and inference of deep neural networks.

5 See footnote 3. 
6 See footnote 3. 
7 See footnote 3. 
8 See footnote 3. 
9 This is not just a python library, TensorFlow libraries exist for Java, C++, etc. 
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• CVE-2023-25668—Attackers using Tensorflow prior to 2.12.0 or 2.11.1 
enables attackers access to heap memory leading to a crash or remote code 
execution. 

• CVE-2023-25676—When running versions prior to 2.12.0 and 2.11.1 with 
XLA, tf.raw_ops.ParallelConcat segfaults with a nullptr dereference when 
given a parameter ’shape’ with rank that is not greater than zero. 

4 Intersection of Security and AI/ML 

In this section, we discuss the intersection of AI/ML and security from two view-
points. First, we discuss the application of AI/ML systems for network intrusion 
detection, it’s associate risks and how to effectively counter the risks. Second, we 
discuss the security of AI/ML systems used for network intrusion detection. 

4.1 AI/ML for Network Security 

The increased use of AI/ML in a security context requires an understanding of the 
threats from advanced adversaries. The coupling of machine learning with a network 
security application, increases the attack surface. Subsequently, the development of 
a defense of AI/ML based network security classifiers against adversarial attacks is 
essential. 

4.1.1 Adversarial Machine Learning 

Adversarial machine learning (AML) is the ability of an attacker to cause a 
classifier’s (i.e., model) misclassification. AML encompasses a variety of attacks, 
but our focus is on evasion and poisoning. An evasion attack is an attacker’s 
perturbation of a sample during prediction time to cause misclassification. Whereas, 
a poisoning attack takes place during the training process of a classifier, to cause 
misclassification. There are two different common types of poisoning attacks. The 
first type of poisoning is called an availability attack. Which is a non-targeted type 
of attack. The second type is commonly referred to as a Trojan. In a Trojan attack, 
the adversary targets a specific class to poison. Thereby causing misclassification 
toward a targeted class. 

4.1.2 Adversarial Machine Learning for Network Security 

Traditionally, AML has been largely focused on the image detection domain. 
Recently, a limited number of AML studies have shifted the focus toward the 
cyber security domain [12, 15]. A distinction in AML for the cyber domain is the
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Fig. 5 Example of Image 
transformation from problem 
to feature space and the 
inversion 
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Fig. 6 Example of a network flow (i.e., problem space) transformation to features and the inability 
to inverse it 

difficulty of inversion from the feature to problem space. The feature space is the 
numerical values that describe a sample. For example, the matrix of pixel intensities 
(i.e., numerical values), seen in the right of Fig. 5, can be converted to a vector in 
feature space. The problem space is an actual image seen in the left of Fig. 5. For  
the image detection domain, the transition from problem to feature space is easily 
inverted. Figure 5 demonstrates the transformation from an image to a matrix of 
pixel intensities in the feature space. Also, Fig. 5 demonstrates the ability to invert 
the feature space to an image. 

In Fig. 6, a network flow is transformed into a feature vector. These features 
are statistics about the network flow. However, the inverse transformation in Fig. 6 
is not intuitive. Thus, the transformation from feature space to a network flow, 
requires an extra step to discover the actual network traffic flow to represent the 
statistics. Therefore, AML in the cyber domain requires an extra step of the attacker 
to translate the feature space perturbations to actual network traffic. Another words, 
the transformation of a feature vector to actual network traffic is ad-hoc and difficult. 

The features of a machine learning algorithm for a network security context are 
“hand crafted” by subject matter experts. Therefore, the constraints in a network 
security classifier scenario are ad hoc. The features of a ML algorithm are the 
target of perturbation by an attacker, to evade detection [14]. The perturbations are 
constrained by physical and mathematical properties [12]. For example, the attacker 
can not perturb a network flow to be negative. An example of a mathematical 
constraint is an attacker perturbation of the total number of bytes in a network flow, 
will require the respective update of the average number of bytes. 

Many of the prior studies have focused on the feature space and have not 
converted the adversarial samples to the problem space to evaluate the effectiveness
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of evasion, while preserving the malicious intent. Thus, prior studies evaluated AML 
from the feature space. However, feasible attacks must be evaluated in the problem 
space and are more realistic. Feature space attacks only focus on perturbing the 
values to produce adversarial samples. Thus, requiring an attacker to investigate 
malicious methods to reproduce the actual network traffic reflecting the feature 
values of the adversarial sample. Whereas, a problem space attack directly perturbs 
the network traffic to produce an adversarial sample. For example, these attacks 
could be realized in the problem space by modifying the scanning speed parameter 
of a tool such as nmap. The authors in [3] suggest that problem space attacks 
are directly implemented and feasible in a realistic scenario. Furthermore, in [4], 
the authors suggest that real attackers do not leverage the traditional feature space 
adversarial attacks. Thus implying that problem space attacks are feasible, effective, 
and less time consuming for real attackers. 

4.1.3 Countermeasures 

The defense of network security models against both adversarial evasion and 
poisoning attacks are essential. Ensembles have been shown to provide a defense 
against both evasion and poisoning attacks in [16, 46]. An ensemble is composed 
of a group of individual weak classifiers. In Fig. 7, an example of an ensemble 
is shown. The individual classifiers in the ensemble contain subsets of features 
or the training dataset. In [16], the defense against an evasion attack is proposed 
using a hierarchical ensemble composed of classifiers that use disparate feature 
sets. Each classifier evaluates the network traffic from a different perspective. An  
analogy of evaluation using different perspectives is an biometric identification 
system composed of a retinal scan and fingerprints. 

Fig. 7 Example of an 
ensemble and an AML 
evasion attack sample as 
input
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A hierarchical ensemble can be thought of as a defense in depth. A defense in 
depth is a well know computer security methodology where each layer addresses 
a vulnerability of another layer. Thus, as a whole, the layers of a defense in depth 
provide a stronger protection. Similarly, each layer of the ensemble uses disparate 
feature sets to augment each other and evaluate the network traffic from different 
perspectives. 

A simplistic example of a defense in depth hierarchical ensemble contains 
two layers using disparate feature sets. A single layer can evaluate network 
communications using statistical features of the flows. While another layer can 
evaluate the DNS requests of network communications using a natural language 
model and associated features. Thus, each layer evaluates the network traffic from 
a different perspective. Consequently, the hierarchical ensemble increases the cost 
of a successful attack. That is the attacker needs to obtain domain knowledge in 
network communications and natural language processing. Additionally, incurring 
an increase in time required to implement and execute two very different attack 
types. 

Ensembles are versatile and can also defend against adversarial poisoning 
attacks. In [46], the authors use a nested ensemble to defend against poisoning 
attacks. Their work, subsequently leverages subsets of the data and relies on 
disagreements among the members of the ensemble to identify the presence of 
poisoned samples. Their methodology, also produces a sufficiently cleansed dataset 
to restore a baseline performance. However this method relies on the use of a large 
training dataset, since the resultant clean dataset size has been significantly reduced. 

These defenses have been evaluated from adversarial samples generated in 
the feature space, while being aware of constraints. However, evaluation has not 
been adequately performed using a problem space attack. Notionally, the use of 
ensembles to defend against an adversarial attack translates from feature to problem 
space. Since, the purpose of these ensembles is to evaluate samples from different 
perspectives by either varying the features or subsets of data. Additionally, an 
adversarial problem space sample is a perturbation or mutation of the original 
malicious network traffic. Thus, allowing each ensemble member to augment the 
other to provide a more robust detection. 

4.2 Security Considerations for AI/ML 

AI/ML systems need innovative cybersecurity tools and methods to improve their 
trustworthiness and resiliency. Similarly, cybersecurity can benefit by utilizing 
AI/ML to increase awareness, react in real-time, and more importantly improve its 
overall effectiveness. This is particularly critical to self-adaptation and adjustment 
in the face of ongoing attacks that impact the attacker-defender asymmetry [35]. 
In a panel on “AI for Security and Security for AI [6],” panelists discuss how AI 
systems are systematically vulnerable to a new class of vulnerabilities and how the 
adversary is exploiting these vulnerabilities to alter AI system behavior to serve a
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malicious end goal. In [7], authors present potential security threats from malicious 
uses of AI/ML technologies, and proposes ways to better forecast, prevent, and 
mitigate these threats. The authors in [7], note that cybersecurity must be a major 
and ongoing priority in an effort to prevent and mitigate harms from AI systems, 
and best practices from cybersecurity must be ported over wherever applicable to 
AI systems. 

Sommer and Paxson [43] note that a common assumption that is made in 
intrusion detection is that attacks exhibit characteristics that are different than those 
of normal traffic. This, however, is not true. A sophisticated adversary can fine tune 
the attack traffic such that its deviation ‘. Δ’ is small enough to defeat the AI/ML 
system’s expected deviation. An AI/ML method works well when it is used with 
data that is very similar to what it was trained on. Else, if the testing data is different, 
it fails. A very good example illustrating this phenomenon can be witnessed in the 
domain of self-driving cars [7, 35]. A self-driving car trained in sunny, cloudy, 
rainy, and snowy weather might still perform quite poorly in sleet or hail. These 
are common problems because in all application domains it is extremely difficult 
to acquire data for all possible operation scenarios. In particular, when used for 
network intrusion detection, the highly volatile and dynamic operating conditions of 
an enterprise network make it very challenging to develop a robust AI/ML model. 

One key consideration for the security of AI/ML models developed for network 
intrusion detection is having a robust supply chain security. Any and all hardware, 
software and open-source libraries used in developing AI/ML systems should be 
thoroughly vetted and rigorously tested prior to deployment. A second key con-
sideration, complimenting the first one, is to have a robust vulnerability disclosure 
and management program in place. There are a growing number of vulnerabilities 
in AI/ML, and its use increases the attack surface of existing systems. While the 
objective is to keep the AI/ML supply chain secured air-tight end-to-end and all the 
systems using the AI/ML, it is realistic to expect vulnerabilities to exist. However, 
what is lacking is how soon it is uncovered and once uncovered how effectively 
is it disclosed in a responsible, effective and timely manner. The answer is a 
robust vulnerability disclosure and management program that will help navigate the 
situation better and mitigate the damage while containing it. 

ATLAS, short for Adversarial Threat Landscape for Artificial-Intelligence Sys-
tems, developed by MITRE [36], enables one to navigate the landscape of threats 
to machine learning systems. Furthermore, applying the cybersecurity policies 
of vulnerability disclosure and management to AI/ML can both heighten the 
appreciation and help better manage the cybersecurity risk associated with AI/ML 
systems [21]. In [44], authors explore how the current paradigm of vulnerability 
management could potentially be adapted to include AI/ML systems by considering 
the possibility of assigning Common Vulnerabilities and Exposures (CVE) identi-
fiers (CVE-IDs) to vulnerabilities in AI/ML systems as they are uncovered.
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5 Conclusion 

A common assumption that is made when employing AI/ML systems for network 
intrusion detection is that attacks exhibit characteristics that are different than those 
of normal traffic. This, however, is not true. Additionally, network statistics can 
be produced for malicious network traffic that looks sufficiently similar to normal 
communications. Thereby, tricking the AI/ML model. An AI/ML model works 
well when it is used with data that is very similar to what it was trained on, 
else it fails. Adversary samples, are outside of the space of the training dataset. 
As AI/ML capabilities become more powerful and widespread, new attacks will 
stem from the use of AI/ML systems. Therefore, it is realistic to expect attacks 
enabled by the growing use of AI/ML systems to be very effective as they can 
be precisely targeted making it very challenging to attribute. AI/ML is a double-
edge sword just like human intelligence is and therefore great caution has to 
be exercised when developing AI/ML systems. Without adequate research and 
development of defenses, progress in AI will lead to serious security threats 
from expansion of existing threats, introduction of new threats, and alteration 
of the typical character of threats. Developing robust supply chain security and 
AI/ML vulnerability disclosure program will be two important considerations along 
with adopting recommendations from NIST AI-RMF and ATLAS [36]. As with 
any other technology, the vulnerability of an AI-based system will depend on 
three aspects—vulnerabilities of the AI/ML model(s) used by the system, the 
environment in which the AI/ML system is deployed, and the other systems that 
interact with the deployed AI/ML system. In this chapter, unlike most previous 
work that have evaluated the security of AI/ML systems from the adversarial 
ML view point, we evaluate the security of AI/ML systems from an end-to-end 
perspective that accounts for vulnerabilities in software dependencies and supply 
chain and discusses the importance and need for a AI/ML vulnerability disclosure 
and management program. 
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Understanding the Ineffectiveness of the 
Transfer Attack in Intrusion Detection 
System 

Rui Duan, Wenwei Zhao, Zhengping Jay Luo, Ning Wang, Yao Liu, 
and Zhuo Lu 

1 Introduction 

With the increasing prevalence of security concerns in the networking domain, the 
intrusion detection system (IDS) has developed into a crucial tool for detecting 
and safeguarding against network attacks propagated through manipulated network 
traffic. Recently, IDS has been empowered via machine learning to detect unsafe 
networking traffic behaviors. Specifically, IDS can leverage the extracted features 
to identify whether the traffic packet is malicious or benign. Several popular 
machine learning methods have been employed in IDS, including Support Vector 
Machine (SVM), Decision Tree (DT), Multilayer Perceptron (MLP), and K-nearest 
Neighbors (KNN). 

However, the state-of-the-art IDS faces the same problem as machine learning 
models: they are all vulnerable to adversarial examples (AEs). Attackers can 
manipulate the original traffic packets by adding a small perturbation to revise 
the network packets’ labels as predicted by the IDS. Different attacks have shown 
that IDS is vulnerable to AEs with varying levels of attack knowledge, such as 
white-box attacks [2, 43, 48], gray-box attacks [18, 22, 24], and black-box attacks 
[28, 56, 59]. These attacks have more or less real-world impact depending on the 
attack knowledge; in other words, the less knowledge the attacker has, the greater 
the real-world impact. However, we are confused about whether the transfer attack 
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is still effective in machine-learning-based IDS, where attackers have no knowledge 
and cannot query the target models. 

To this end, we aim to explore the transferability of AEs in the network domain. 
Our objective is to understand the attack factors that can influence the transfer 
of AEs to IDS models. We primarily focus on three attack factors: (i) different 
attack algorithms [29], (ii) various training datasets [32], and (iii) different model 
architectures. Building upon the findings related to these attack factors, we propose 
to generate highly effective AEs and compare them with white-box-based AEs to 
understand the ineffectiveness of transfer AEs in IDS. In summary, we present the 
following contributions: 

1. We evaluate a wide range of existing white-box attacks, such as CW, FGSM, 
BIM, and JSMA, with different attack factors, selecting the best-performing 
attacks as benchmarks for further comparison of transfer attacks. 

2. We evaluate different training factors to build surrogate models, and investigate 
various levels of training and testing to identify a feasible method for construct-
ing surrogate models with high transferability. 

3. We use different attack algorithms to generate transfer AEs, highlighting the CW 
attack as the most effective method for generating high-transfer AEs, in line with 
the findings from the white-box benchmarks. Additionally, we discover that the 
perturbation norm has an impact on transferability within a specific range. 

The organization of this chapter is: Sect. 2 introduces the background of the 
adversarial attack and Intrusion Detection System. Section 3 presents the process of 
building the surrogate models, and the evaluation of the effect of building surrogate 
models with different training factors. We investigate the transferability of AEs in 
Sect. 4. Finally, we conclude this chapter in Sect. 5. 

2 Background of Adversarial Attack on Intrusion Detection 
System 

In this section, we first take a look at the background of IDS, and IDS commonly 
has two classes: signature-based detection and anomaly-based IDS, and we mainly 
focus on the latter case. We then present the common adversarial attacks to machine 
learning and discuss the related adversarial attacks to the IDS. 

2.1 Intrusion Detection System 

An intrusion detection system (IDS), empowered by a machine learning model, is a 
state-of-the-art defense mechanism designed to prevent various attacks on networks
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[26]. Specifically, IDS can be related to the OS information, which is referred to as 
host-based IDS, or it can focus on analyzing network packets, such as IP address 
and protocol usage. We refer to the latter as network-based IDS. In this chapter, our 
primary focus is on network-based IDS, and there are two common types of models: 
knowledge-based and machine learning-based schemes. 

1. Knowledge-based mechanism: signature-based detection[33], as the represen-
tative of the knowledge-based IDS, commonly compares the extracted traffic 
features with the pre-built knowledge to predict well-known attacks, but it is 
ineffective to the unfamiliar attacks which are outside the pre-built knowledge, 
even if these unknown attacks only have small deviation to the known attacks. 

2. Machine learning-based techniques: To get rid of the limitation of the knowledge, 
anomaly-based detection is built with machine-learning schemes, which are 
flexible to detect malicious behavior via the deviation between the observed 
network packets and normal traffic. Compare to signature-based detection, 
anomaly-based IDS is feasible to detect various attacks with limited knowledge 
or even no knowledge of the novel attacks. However, as the common issue for the 
machine learning model, anomaly-based detection is vulnerable to adversarial 
examples (AEs). 

Anomaly-based IDS is more popular to detect malicious behavior. As shown 
in Fig. 1, there are commonly three stages for the Anomaly-based IDS. The first 
stage is Parameterization, which will process the monitored samples and extract 
the features for the next stage. The next is Training stage that train the normal or 
abnormal labeled traffic packets via a machine-learning model. And we can consider 
this model as an IDS model. Lastly, for the Detection stage, the trained IDS model 
can be used to classify a traffic instance as malicious or not, and output an alert if 
the input has malicious behavior. However, a new adversarial attack shows a threat 
to this kind of IDS mechanism. Thus, we propose to review the common adversarial 
attack, and then explore how these attacks can be employed in the IDS. 

Monitored 
Environment 

Parameterization 

(1) 
Training 
(2) 

Detection 

Model 

Results(3) 

IDS 

Fig. 1 Anomaly-based IDS architecture
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2.2 Adversarial Attacks and Formulation 

An IDS classifier can be denoted as a function .f (·), which processes the traffic 
package x as input, i.e., the parameterization stage. In the detection stage, it will 
output a probability score .P = [p0, p1, · · · , pk−1], where .pi ∈ [0, 1], and 
.
∑k−1

i=1 pi = 1 for the set of k classes, i.e., normal or abnormal behavior label. 
The predicted label will be the class with the highest probability . pi , and . ypred =
argmax(f (x)). 

Existing adversarial attacks aim to add some small perturbation . δ that can 
mislead the model to predict a wrong label, .f (x + δ) /= y, where y is the 
ground truth label of input traffic packers x. Existing adversarial attacks can be 
categorized into three classes according to different knowledge levels. White-box 
attacks assume full knowledge of the target model, including the training dataset, 
parameters, and algorithms, while gray-box and black-box attacks have only partial 
or even no knowledge of the target model, respectively. As shown in Table 1, there 
are some popular white-box attacks to IDS, and they have different computational 
complexity and attack effectiveness, these attacks including CW[9], FGSM [17], 
BIM [23], and JSMA [39], and most high effectiveness attacks commonly require a 
high computation complexity. And we briefly introduce different attack algorithms 
in the following. 

1. CW attack formulates the generation of AEs as an optimization process, which 
minimizes the . Lp norm of the perturbation . δ to improve the stealthy of the AEs. 
It can be formulated as: 

. min ||δ||p + c · max{max{fi(x + δ) : i /= t} − ft (x + δ),−κ},

where .|| · || indicates .Lp norm which includes . L2, . L∞, and . L0, and it 
depends on the specific requirements for the AEs. .fi(x) indicates the confident of 
classifier predicts the input x on i-th label, and t represents the target label. . κ is 
the parameter to ensure the high confidence of generating an AE: .x + δ to be the 
target label t . CW is a popular attack algorithm due to its high effectiveness and 
good stealthiness, but it also has a time-consuming problem compared to other 
attack methods. 

2. FGSM is an effective method to generate AEs. Different from CW attacks which 
iteratively update the loss function, FGSM perturbed x in the direction of a 

Table 1 Performance of different adversarial attacks 

Method Computational complexity Attack effectiveness 

CW [9] High High 

FGSM [17] Low Low 

BIM [23] High High 

JSMA [39] High High
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gradient that can maximize the loss of the function, where . δ is computed via 
the sign of the gradient, and it can be expressed as: 

. δ = ϵsign(∇xJ (θ, x, yt )),

where .J (θ, x, y) is the loss function with the model parameter . θ , it takes traffic 
packets x and target label . yt as input, and output the loss of the model, i.e., 
cross-entropy of the trained neural network. The most benefit of FGSM is its 
high efficiency, because there is no extensive optimization (e.g., CW), and it can 
directly generate the final . δ via computing the direction of the gradient. 

3. BIM, an iterative method based on FGSM, can iteratively compute the sign of 
the gradient and update the gradient with a small step size, and it can clip the 
perturbed samples to make sure .x + δ is a valid AE inside the bound. 

. 
x̂0 = x

x̂n+1 = Clipx,ϵ{x̂n + αsign(∇xJ (θ, x̂n, yt ))},

where . x̂ indicates the perturbed input, .x̂ = x + δ, and . x̂n is the n-th iteration 
AE, . α controls the step size of updating the perturbation to the previous AE. 
The BIM attack is known due to the fact that it is more powerful than FGSM in 
creating adversarial examples, it can well combine with the optimization method, 
i.e., momentum. Nevertheless, due to its iterative approach, the BIM attack has a 
computational cost problem. On the other hand, it cannot ensure stealthiness as 
well as the CW attack. 

4. Jacobian-based Saliency Map Attack (JSMA) is a specific attack that can 
optimize the number of perturbed features. Different from other attacks, JSMA 
aims to find the most representative features, which have the most impact on 
the classification performance, and then maximize the perturbation of these 
important features and avoid changing other features as less as possible. Specif-
ically, the mainly requirements of JSMA is maximizing .ft (x) and minimizing 
.fi(x),∀i /= t , and the saliency map .S(x, t) can be expressed as: 

. S(x, t)[i] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if
∂ft (x)

∂xi

< 0 or
∑

j /=t

∂fi(x)

∂xi

> 0

∂ft (x)

∂xi

|
∑

j /=t

∂fi(x)

∂xi

> 0|, otherwise,

where i indicates the input feature. In the first stage, JSMA computes the partial 
derivatives of the matrix of the target class with respect to each feature i. In the  
second stage, JSMA identifies the most salient features in the second stage. In 
the third stage, it manipulates the salient feature according to their impact on the 
target class. At last, we use JSMA by repeating the second and the third stage, 
until achieving the objective, i.e., . x̂ classified as . yt . Compared to CW, the JSMA



104 R. Duan et al.

attack has shown its effectiveness against different machine learning models, but 
it still lacks the consideration of making the AEs more stealthy. 

Overall, we conclude 4 commonly used white-box attacks [56] algorithm, which 
is high effectiveness to launch an attack on the target model. However, it is still 
unclear whether these attacks can have good transferability without obtaining any 
knowledge of the target models, i.e., gradient knowledge. 

2.3 Existing Attacks on IDS 

2.3.1 White-Box Attacks 

As shown in Table 2, most white-box attacks [2, 43, 48] assume have access to the 
target model, and then leveraging the gradient information to generate AEs, i.e., 
employing FGSM [43] to create AEs. The most benefit provided by the white-box 
attack is high effectiveness and efficiency [56], i.e., nearly 90% attack success rate 
with 500 iterations. However, there are some back draws of these knowledge-based 
attacks. (i) Limited real-world applicability: existing white-box attacks [2, 43, 48] 
commonly need to directly compute the gradient of the target model to generate 
AEs. However, from practical consideration, attackers cannot access the target 
models or even do not know the architecture of the IDS, so it is unrealistic to launch 
a white-box in the real-world scenario. (ii) Lack of generalizability, most white-box-
based AEs are most likely specific to the target model. White-box attacks commonly 
do not focus on creating these AEs towards other different models, even if they have 

Table 2 Summary of existing adversarial attacks on IDS 

Method Threat scenario Knowledge Description 

[2] White-box Gradients Exploring AEs on the botnet traffic classification. 

[43] White-box Gradients Evading detection via manipulating command and 
control of AEs. 

[48] White-box Gradients Using active learning and GAN to create AEs to 
attack IDS. 

[28] Black-box Outputs Utilizing a GAN to convert benign network traffic 
into adversarial instances. 

[59] Black-box Outputs Generating AEs of traffic flows via deep 
reinforcement learning. 

[56] Black-box Outputs Querying with target model to generate Black-box 
based AEs. 

[22] Gray-box Partial knowledge Using knowledge of the features and architecture 
to generate AEs 

[18] Gray-box Partial knowledge Creating universal adversarial perturbations with 
limited knowledge 

[24] Gray-box Partial knowledge Generate AEs with linear physical constraints
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the same objective, i.e., monitoring and classifying the traffic packets, and most AEs 
[32] can not have a high transferability to other models. (iii) Difficult to survive 
with the defense, there are some defense mechanisms, i.e., adversarial training 
[3, 8, 17, 31, 46, 53, 57] [56] that can be employed to detect or mitigate adversarial 
examples, there is also detection mechanism to filter the malicious packets [56]. 

2.3.2 Black-Box Attacks 

On the other hand, existing black-box attacks [28, 56, 59] assume obtaining the 
outputs of the target model, i.e., hard label results, malicious or benign. Although 
Black-box attacks [28, 59] have more substantial real-world applicability than 
white-box attacks, they also show some cons and problems we need to consider. (i) 
Heavily rely on the querying: black-box attacks[60, 62] have to keep querying with 
the black-box model to obtain the output information[12, 28, 56, 59]. However, the 
query will cost more time or even financial cost[30]. (ii) Lower attack effectiveness 
due to limited knowledge, different from the white-box attacks, the model’s 
architecture, parameters, and training dataset are unknown to the attackers, which 
could make it more challenging to craft effective AEs. (iii) Less transferability: since 
most black-box attacks aim to prob with a target model, which leads to a specific AE 
towards to this model, and this kind of AEs lack of transferability to other models. 

2.3.3 Gray-Box Attacks 

Gray-box attacks assume that attackers can get partial knowledge [18, 22, 24] 
about the targeted system, i.e., the system’s features and architecture. In gray-box 
attacks, the limitations of Knowledge and challenges in transferability are inherent. 
Compared to black-box attacks, gray-box attacks have practical constraints: Gray-
box attacks commonly need to know a combination of knowledge gathering and 
system querying to gather information about the targeted system. Concluding from 
white-box, black-box, and gray-box attacks have limitations to the transferability, 
so we propose to investigate the transferability attack on the IDS. 

2.4 Threat Model 

Attack Goal In this chapter, we mainly focus on studying the transferability of the 
AEs to the IDS. Thus, attackers should have no knowledge of the black-box model, 
neither the model architecture nor the training dataset and parameters. 

Attack Knowledge Different from existing black-box attacks, there will be no 
outputs to guide us to generate AEs. As shown in Fig. 2, the attacker only has access 
to add perturbation to the traffic packets, and attackers have no interaction with the 
target model.
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Packets 

Fig. 2 Adversarial attack on IDS 

Attack Capability The attackers propose to revise the input packets class to a 
target label, i.e., changing the traffic packets label from benign behavior o malicious 
behavior. And we assume attackers can their own surrogate models and employ the 
various attack algorithms to generate AEs. 

3 Building Surrogate Model of IDS 

In this section, we aim to investigate how well different training factors affect the 
building of surrogate models. We first introduce and analyze the dataset of IDS 
models, and then analyze how to train the models with different datasets. And we 
also present different machine-learning models that can be used to train the IDS. 
Last, we find the most appropriate training factor to train the model for further 
transfer attacks. 

3.1 Datasets 

NSL-KDD [52] is a widely used dataset set that offers potential solutions to several 
inherent challenges found in the previous datasets, and it is a valuable benchmark for 
researchers to evaluate and compare various intrusion detection methods effectively. 
There are several advantages to this dataset: 

1. Avoid bias: all the records in the train set of the NSL-KDD dataset is well-crafted, 
which provides the benefit that models are not feasible to be trained according to 
more frequently occurring records. The same to the proposed test sets, which also 
avoid any duplicate records, preventing the model from predicting bias towards 
common records. 

2. Diversity of difficulty levels: ensuring a more comprehensive evaluation of multi-
ple learning methods, and each dataset is composed of equal distribution of each 
difficulty level group. This method provides a large range of classification rates 
for different machine learning methods, enhancing the efficiency of evaluating 
and comparing these techniques.
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3. Reasonable data distribution: the amount of the record sets is well-distributed, 
which opens a door for the model training that no need to randomly select a small 
subset. This consistency in evaluation will bring more benefits to researchers 
when they have to compare different existing works. 

3.2 Building IDS via Various Machine Learning Models 

There are multiple machine learning methods have been extensively employed in 
IDS based on relevant research findings. In order to widely evaluate the effectiveness 
and generalizability of our proposed model, we constructed seven algorithm-based 
black-box IDS models, and here are some details of these widely used baseline 
models. 

1. Support Vector Machine (SVM) [38], known as one of the most powerful 
machine learning algorithms, which can be utilized in IDS [20, 35, 50, 56]. 
SVM is en-powered to detect anomalies and classify traffic packets based on 
their specific characteristic to build optimized decision boundaries. SVM can 
effectively distinguish between normal and malicious network behavior due to 
leveraging the principles of margin maximization and kernel functions. 

2. Naive Bayes (NB) [44] is commonly employed in the classification of network 
traffic [19, 34, 51], because they can distinguish the normal and malicious 
instances via utilizing the observed features, i.e., packet headers [11], behavior 
patterns [4], and payload characteristics [55]. NB can effectively predict the 
presence of intrusions via computing the conditional probability of a network 
instance belonging to a specific class (normal or malicious). 

3. Multilayer Perceptrons (MLP) [5] can well study the learning patterns and 
correlations between input features, thereby, having a good performance on 
classification [1, 13, 15]. The network is trained on the adjusted weights labeled 
data, which can lead to minimized prediction errors. After training, the MLP can 
make a classification output that whether traffic packets are normal or malicious 
based on the learned patterns. 

4. Logistic Regression (LR) [58] utilizes the logistic function to model the corre-
lation between input features and the probability of an instance being classified 
into a particular class (normal or malicious) [6, 47, 54]. During training [16], 
LR estimates the parameters of the logistic function by minimizing a cost 
function using labeled training data. This iterative process ensures that the LR 
model optimally fits the training data, enabling accurate predictions of class 
probabilities for new instances. 

5. Decision Tree (DT) [37] is an extensively employed algorithm for classification 
purposes [21, 36, 49]. DT constructs a tree-like model that represents a sequence 
of decisions and their potential outcomes, relying on the features observed in 
network instances, which can promote identifying the most influential features 
for intrusion detection.
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6. Random Forest (RF) [7] leverages the collective knowledge of the ensemble to 
make predictions about the class labels of traffic packets [14, 42, 61]. The specific 
process, i.e., voting or averaging, can guide the model to make a final prediction, 
which is obtained via overall the prediction of different individual decision trees. 

7. KNearest Neighbors (KNN) [41] classifies a network traffic packet via finding 
the nearest neighbors in the feature space [25, 27, 45]. The "k" in KNN 
indicates how many nearest neighbors can be considered. KNN commonly is 
computationally expensive, because of the high cost when calculating distances 
between instances. 

3.3 Training Surrogate Models 

Since the training dataset is also an important factor [32] in terms of transferability, 
and this aspect has been studied in the image domain [29]. Focus on the network 
traffic domain, we aim to build an IDS with a good classification performance, 
thereby, improving the transferability. One direct way to train the IDS with different 
settings is to use different training and testing data. Specifically, NSL-KDD has 
different categories of intrusion, and we focus on investigating the DoS attacks [56], 
and there are a total of 148,517 records. We set 3 different training and testing 
distributions, and denote each one as Training Factor 1, Training Factor 2, and 
Training Factor 3. For Training Factor 1, 75% training and 25% testing; Training 
Factor 2: 80% training and 20% testing; and Training Factor 3: 85% training and 
15% testing. We will test 7 different machine learning models with different cases, 
i.e., SVM, NB, MLP, RF, DT, KNN, and LR. 

3.4 Evaluation Metrics 

We first present some basic metrics that are widely used in the machine learning 
domain. The metrics derived from the count of true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN) are collectively known as 
confusion matrix-based metrics. 

• True Positives (TP) indicates IDS correctly predicts the malicious traffic packets 
as the malicious label. 

• False Positives (FP) refers to the IDS wrongly predicting benign traffic packets 
as malicious labels. 

• True Negatives (TN) indicates the count of cases that IDS correctly classify the 
benign traffic packets as benign labels. 

• False Negatives (FN) can be considered as instances where the model wrongly 
predicts malicious traffic packets as benign traffic packets.
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Based on those basic metrics, we find some commonly used metrics that can 
measure the prediction results of the machine learning models: Recall, Precision, 
F1-Score, and False Positive Rate (FPR). 

1. Recall, which is similar to the True Positive Rate (TPR), measures the proportion 
of correctly predicted malicious traffic packets out of the total actual malicious 
traffic packets, Recall= .TP/(TP + FN); 

2. Precision measures the percentage of traffic packets predicted as malicious labels 
that are actually malicious samples. Precision = .TP/(TP + FP); 

3. F1-Score aims to measure the model’s performance which is a balanced eval-
uation between the recall and precision, defined as: F1-Score= . 2(Precision ·
Recall)/(Precision + Recall). 

4. False Positive Rate (FPR) [10] can measure the proportion of wrongly predicted 
malicious instances out of the total actual benign samples. .FPR = FP/(FP+TN). 

3.5 Model Performance Analysis 

Impact of Training Factor on Recall As shown in Fig. 3, MLP achieves the best 
Recall (0.94) with Training Factor 3. A higher recall indicates that the machine 
learning model is effectively predicting a large proportion of the malicious traffic 
packets in the NSL-KDD. We can also see that the SVM and KNN have a close 
performance to the MLP, where SVM and KNN can achieve 0.93 and 0.92 Recall, 
respectively. We also find that all the models can achieve a better Recall with 
training factor 3, even for the worst one (e.g., DT). 

Impact of Precision A higher precision indicates that the classifier can accurately 
identify a large percentage of the predicted malicious traffic packets as true 
malicious samples. As shown in Fig. 4, most models can achieve a Precision above 
0.75 with the Training Factor 2 and 3. We observe that the training factor can also 
affect the performance, and Training Factor 1 appears to have a lower Precision, i.e., 
0.72 in DT. And Training Factor 3 still achieves the best performance. 

Fig. 3 Recall of different 
machine learning models
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Fig. 4 Precision of various 
machine learning models 

Fig. 5 F1-Score of different 
machine learning models 

Fig. 6 FPR of various 
machine learning models 

Impact of F1-Score A good F1-score represents a balanced performance between 
precision and recall, which shows the classifier’s capability to achieve both high 
Recall and Precision at the same time. As shown in Fig. 5, MLP still achieves a 
balanced performance of both Recall and Precision. Considering the training factor 
to the classifier, Training Factor 2 has a close performance to Training Factor 3, 
and these two training factors are effective settings for the classifier to achieve high 
performance. 

Impact of FPR Different from the previous metrics, a low FPR can reflect that 
the IDS has a minimal probability of misjudging the benign traffic packets as 
malicious. As shown in Fig. 6, NB has the worst classification performance with the 
highest FPR in Training Factor 1. We can find the minimal FPR existed in the MLP 
(Training Factor 3), which has consistent results with the previous experiments. 

Indeed, the training factor can influence the classification performance of 
different models, and we propose to choose Training Factor 3 as our default training 
setting because higher prediction results appear to have a high good transferability 
than the lower performance models. On the other hand, MLP seems to be the most
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effective model to classify malicious and benign traffic packets. And we propose to 
investigate different attack settings based on this most effective model. 

4 Investigating the Transferability of AEs in IDS 

In this section, we aim to explore how the attack factor affects the transferability of 
AEs. We first implement different white-box attacks on various machine-learning-
based IDS, and find the benchmark for the transfer attacks. And then we propose to 
generate the effective AEs with well-trained surrogate models and the most effective 
adversarial attack algorithms. Last, we present two key observations between the 
transfer attacks an white-box attacks. 

4.1 Different AEs Generation on White-Box Attacks 

We first aim to find the benchmark of different white-box attacks on IDS. For 
example, we want to know the best performance of the white-box attacks, which 
is the upper bound of the transfer attack, and then understand how the effectiveness 
of the transfer AEs on IDS. 

To this end, we compare different white-box attacks [56] on machine-learning-
based IDS, including CW, FGSM, and BIM. And we use attack success rate (ASR) 
as the evaluation metric, which indicates the percentage of the AEs successfully 
spoofing the IDS to predict the target wrong level, i.e., the original traffic packets 
label as benign, and IDS classifies these perturbed packets (AE) as malicious 
behaviors and vice versa. 

As shown in Fig. 7, there are four white-box attacks with various perturbation 
norms (. L2 norm) ranging from 0.05 to 0.50. We can observe that the ASR of all 
these attacks is directly proportional to the perturbation norms of AEs. For example, 
when we set the . L2 norm as 0.05, the ASR of the FGSM is only 0.1732. But it 
dramatically increased when the norm ranges from 0.10 to 0.25, i.e., its ASR can 
achieve 0.6390 at 0.25 . L2 norm. On the other hand, we can see that the CW attacks 
can always achieve higher ASR than the JSMA, FGSM and BIM, e.g., the ASR of 
CW is 0.9600, which is much higher than that of BIM (0.7448) and FGSM (0.7002). 
As we discussed in Sect. 2.2, CW attacks commonly involve large computations 
to optimally generate AEs that have high attack effectiveness to the white-box 
model. This finding is also consistent with the attacks in the image domain [32]. 
However, the higher white-box does not indicate a higher transferability, which has 
been studied in the image domain [29, 32]. Therefore, we propose to investigate 
how well these white-box attacks impact the transfer attacks, e.g., whether a higher 
effectiveness white-box attack algorithm will also lead to better transfer AEs to the 
black-box models.
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Fig. 7 Different adversarial attacks on IDS with various perturbation norms 

4.2 Investigating on AE Transferability 

4.2.1 Surrogate Model Settings 

We consider multiple IDS models as we introduced in Sect. 3.2. For example, we 
build MLP-based IDS with a hidden layer with 50 neurons [56]. For remaining 
models, we train the IDS with LR, KNN, NB, DT, SVM, and RF from scikit-
learn library [40]. These different models covered a wide range machine learning 
methods, which ensure the diversity of IDS models. 

4.2.2 Surrogate Dataset Settings 

Considering the Surrogate Dataset, we choose NSL-KDD [52], which is a popularly 
used dataset for most IDS attacks and defense. As we studied in Sect. 3.5, the  
training factor can affect the model performance, and we choose Training Factor 
3 to train our different surrogate models. For the black-box models, we randomly 
employ Training Factors 1 and 2 to build black-box models, which contribute to 
training the model with different classification performances. 

4.2.3 Adversarial Algorithm Settings 

We consider the commonly used gradient-based adversarial algorithm, CW, FGSM, 
JSMA, and BIM. And we use . L2 norm as the constraint for the perturbation. As we 
explored different white-box attacks in Sect. 4.1, the perturbation norm can indeed 
affect the attack effectiveness, but it is still unclear whether the transfer attack has 
similar results to the previous findings. Therefore, we also test the transferability 
with different perturbation norms.
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4.2.4 Evaluation Metrics 

There are commonly two metrics to evaluate the transferability of AEs, i.e., match 
rate [29] and misclassification rate [32]. The match rate quantifies the percentage 
of AEs that can cause both a surrogate model (utilized by the attacker to generate 
AEs) and a black-box model (the target model for the attacker to deceive) to predict 
the same incorrect label. For example, the AEs (the original label is benign) spoof 
the surrogate model predicted as malicious behavior that can also mislead the black-
box models predict as malicious. As there are only two labels for the traffic packets, 
malicious and benign, the misclassification rate is the same as the match rate in the 
IDS scenario, and we propose using the match rate to evaluate the transferability of 
AEs. 

4.2.5 Experiment Setting 

We implement the experiments on the server equipped with one NVIDIA GeForce 
RTX 4090 which offers 24 GB graphics memory with a 384-bit memory bus and 28 
Intel i9-9940X CPU with 3.30GHz. And there are a total of 2 Terabyte SSD. And 
all the code is implemented in TensorFlow 2. 

4.3 Evaluation of AEs Transferability: Results and Discussion 

4.3.1 The Affect of Different Attack Algorithms on Transferability 

We aim to explore the transferability of different attack algorithms including 
FGSM, BIM, CW and JASM. And we set the fixed . L2 perturbation norm as 0.05. 
Specifically, we consider the AEs transferability in the cross-architecture scenario, 
i.e., test the match rate between different surrogate models and target models. The 
classification performance of different models is shown in Table 3. We can see that 
the accuracy of all the models ranges from 0.82 (DT) to 0.92 (KNN), which is not 
very high but still acceptable. Most models’ Precision is good which is over 0.80, 
but DT can only achieve 0.79. On the other hand, the Recall is pretty high compared 
to other metrics, where the minimal one is 0.97 (MLP and LR) and the maximum is 
0.99. Then, we evaluate the transferability of AEs among different models. 

Table 3 Performance 
evaluation of various models 

Models SVM NB MLP LR DT KNN 

Accuracy 0.90 0.87 0.90 0.89 0.82 0.92 

Precision 0.85 0.83 0.89 0.88 0.79 0.97 

Recall 0.99 0.99 0.97 0.97 0.98 0.99 

F1-Score 0.92 0.90 0.93 0.92 0.88 0.98



114 R. Duan et al.

Fig. 8 Match rate of 
FGSM-based AEs 

Fig. 9 Match rate of 
BIM-based AEs 

FGSM First, we focus on the FGSM, as shown in Fig. 8, the models in the x-axis 
represent the surrogate models, and the models in y-axis indicates the black-box 
models, which is trained with different training factors. We can observe that the 
AEs generate from MLP have the highest match rate to the LR model. The minimal 
match rate existed in the NB to DT, which means the AEs created by NB are not 
effective in the DT model. Overall, the MLP has the highest match rate (0.72) to 
the other models, and KNN is in second place, which also has a good transferability 
compared with the remaining models. 

BIM Secondly, let’s take a look at the BIM, which is an iterative version of FGSM. 
The results can be found in Fig. 9, we can see that the maximum match rate (0.62) 
existed in the transfer AEs from MLP to SVM, which is slightly lower than that 
of FGSM. And the lowest match rate (0.01) is from MLP to NB, and the match 
rate from NB to MLP is 0.06, which indicates the transferability between these two 
models is very low. Overall, the AEs generated from SVM, MLP, and KNN have 
more transferability than other models. 

CW Figure 10 shows the match rate of CW attack among different models. We can 
observe that the highest match rate (0.66) is still between MLP and SVM, which is 
the same as the BIM attack. Different to the previous findings of FGSM and BIM,
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Fig. 10 Match rate of 
CW-based AEs 

Fig. 11 Match rate of 
JSMA-based AEs 

the transferability of AEs generated from NB model has substantially improved 
performance. And the lowest match rate (0.15) of CW attack is from DT to NB. In 
general, CW attacks have higher match rate than the previous attacks. 

JSMA As shown in Fig. 11, different from the previous attacks, the match rate 
of NB models appears to be the highest, i.e., from DT:0.26 to SVM:0.56. And the 
second-highest match rate is SVM, which ranges from the LR:0.53 to KNN:0.19. 
Generally, the match rate of JSMA is higher than the FGSM and BIM, but is lower 
than the CW. 

Observation 1 We find that the transferability performance among different attack 
algorithms is CW . > JSMA . > BIM . > FGSM, which is very close to the findings of 
the evaluation of white-box attacks in Fig. 7. These findings reveal that CW attacks 
can always achieve a better performance than the other attacks. And considering the 
model perspective, MLP seems to be the most effective model for CW to generate 
high transferability AEs. It might be a good strategy for attackers to generate high 
transferability AEs via CW attacks based on MLP model. But it is still unclear, how 
will the perturbation norm affect the transferability.
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Fig. 12 Different transfer attacks on MLP with various perturbation norms 

4.3.2 The Affect of Perturbation Norm on Transferability 

Bringing such concerns from the previous findings, we propose to evaluate how well 
the perturbation norm affects the transferability. To do so, we use an effective MLP 
model with CW attacks to generate AEs, different from the previous experiments 
which set a fixed . L2 norm, we decide to change different . L2 norm ranging from 
0.01 to 0.30. 

Figure 12 shows the match rate varies with different models under various 
perturbation norms. We can clearly see that the match rate from MLP to SVM and 
NB achieves the highest at the 0.30 . L2 norm with 0.73 and 0.72, respectively. But 
these two models’ transferability does not increase much when the . L2 norm ranges 
from 0.05 to 0.30. We can see that the phenomenon happened to the other models 
as well, i.e., the match rate of LR increased from 0.38 to 0.53. 

Observation 2 We find that the perturbation norm can affect the transferability 
when the norm is in a small range, i.e., from 0.01 to 0.10. And the transferability 
seems not sensitive with the large perturbation norm, i.e., 0.20 to 0.30. This 
finding is also similar to the white-box attacks which are shown in Fig. 7. The  
transferability can be effectively affected in a specific range (e.g., . L2 norm is small), 
and the improvement of transferability becomes steady when the perturbation norm 
becomes large, i.e., 0.20 to 0.30. 

5 Conclusion 

In this chapter, we explore the effectiveness of the transfer attack in the networking 
traffic domain. We systematically evaluate the transferability of AEs from the 
training datasets, different architectures models, and various adversarial attack
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algorithms. And we find that the transfer attack has common properties with the 
white-box attacks, but we also reveal the limitation of transfer attacks. 
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Advanced ML/DL-Based Intrusion 
Detection Systems for Software-Defined 
Networks 

Nadia Niknami and Jie Wu 

1 Introduction 

In traditional network architectures, the control plane and data plane functions are 
implemented on routers and switches. This results in the independent configuration 
of traffic policies and challenges when deploying new protocols, requiring updates 
or replacements across all devices. Furthermore, managing device configurations 
using device-level tools is time-consuming and error-prone. To address these issues, 
Software-defined networks (SDNs) has emerged as a solution [32]. SDNs differ 
from conventional networks primarily in one aspect: the presence of a network con-
troller. Figure 1 illustrates the SDN architecture including the data plane (consisting 
primarily of transmission devices), the application plane at the top (housing various 
SDN applications), and the control plane acting as a communication bridge between 
the application layer and the data plane. SDN separates the control plane from the 
data plane, centralizing network intelligence in a programmable entity called the 
“Controller", which manages multiple elements of the data plane through APIs. 
This centralized approach provides the SDN controller with a holistic view of the 
entire infrastructure, leading to significant cost reductions compared to conventional 
networks. Monitoring and measuring network traffic flows are essential for ensuring 
data integrity within SDN and facilitating traffic control by the SDN controller. 
However, despite the numerous benefits offered by SDN, it is vulnerable to security 
threats that malicious actors can exploit for various malicious activities. Security 
breaches can have severe consequences, including the loss of sensitive information 
and disruption of network services. As SDNs expand in size and functionality, 
the likelihood of vulnerabilities and bugs also increases, providing potential entry 
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Fig. 1 Anomaly detection in 
SDN 

points for attackers to exploit and compromise network security. Network intrusions 
can originate from various sources of threats [20]. During attempts to breach a 
system, attackers may employ various strategies. One common approach in network 
intrusions involves flooding or overloading the network, with the intention of 
obtaining network-related data that can be exploited later to target vulnerabilities 
and weak spots within the system. This method aims to overwhelm the network’s 
resources and disrupt its normal functioning, creating opportunities for further 
exploitation by the attacker. 

One of the most significant aspects of traffic monitoring is the detection of 
anomalies [3]. Efficiently monitoring the network traffic flow and analyzing all 
the network traffic can help solve such security issues. As the controller monitors 
the network traffic, anomalies can be detected and the traffic can be managed 
accordingly. The collection of accurate network traffic statistics and detecting 
intrusions or anomalies is crucial to improving network management. An attack on 
the controller can be detected by looking for anomalies in incoming packets [14]. 
Network Intrusion Detection Systems (IDSs) are essential tools, available in both 
software-based and hardware-based forms, used for monitoring network traffic and 
analyzing it for signs of potential attacks or suspicious activities. The primary role 
of an IDS is to examine network traffic, identify unwanted or suspicious activity or 
patterns, and promptly alert the network administrator [8]. Typically, IDSs employ 
one or more network traffic sensors to monitor network activity across different 
network segments. These systems continuously analyze and monitor patterns of 
traffic within the monitored network environment. If the observed traffic patterns 
match predefined signatures or policies in the knowledge base, a security alert is 
generated to notify the administrator. IDSs utilize various methods for detecting 
intrusions. These methods can be categorized into two main types: Signature-based 
detection and Anomaly-based detection. Signature-based IDS relies on a database of 
known attacks to identify malicious traffic. These IDSs use the database, which is 
regularly updated with the latest threats, to recognize known attacks. While effective 
at detecting known attacks, signature-based detection has limitations, such as the 
inability to identify zero-day attacks that are not yet included in the database [27]. 
The opular network-based IDS tool used for traffic analysis is Snort [24]. Snort 
is widely used and supports both IDS and intrusion prevention system (IPS)
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modes. In IDS mode, Snort generates alerts based on detections, while in IPS 
mode, it blocks malicious packets. Snort also logs detected attacks and provides 
attack statistics on the console. Anomaly-based IDS employs machine learning and 
statistical techniques to classify network traffic as either “normal" or “anomalous". 
The main objective of anomaly-based IDS is to create a statistical model that defines 
normal traffic patterns. These IDSs offer the advantage of being capable of detecting 
zero-day attacks, which are previously unknown attacks. However, they may also 
generate more false positives when handling legitimate traffic that deviates from 
normal network activity [11]. 

The key success factors for IDS include fast anomaly detection, accuracy, 
and reliability [33]. To address the growing rate and complexity of cyberattacks, 
researchers have leveraged Machine Learning (ML) and Deep Learning (DL) 
techniques to develop IDS systems capable of detecting new and zero-day attacks. 
However, the lack of extensive, realistic, and up-to-date datasets poses challenges to 
the development of IDS. This chapter is divided into two parts. The first part reviews 
the general state-of-the-art anomaly-based intrusion detection methodology, while 
the second part focuses on specific approaches in the SDN test bed. 

2 Machine Learning Based Intrusion Detection Methods 

The primary function of an IDS is to analyze network traffic, identify suspicious 
activity or patterns, and promptly notify the network administrator. Network 
intrusion detection can be regarded as a typical classification problem, which usually 
requires a labeled training dataset for system modeling. Machine learning and data 
mining techniques play a vital role in categorizing analyzed patterns by establishing 
explicit or implicit models. Machine learning focuses on developing systems that 
can autonomously learn from data and uncover hidden patterns without explicit 
programming. Multiple machine learning approaches have been utilized to tackle 
the challenges associated with IDS. These approaches typically encompass three 
primary stages: (1) Preprocessing: The data instances collected from the network 
environment are organized in a structured format, allowing for direct input into the 
machine learning algorithm. Additionally, feature extraction and feature selection 
techniques are applied during this phase. (2) Training: A machine learning algorithm 
is employed to analyze the patterns within various types of data and construct a 
corresponding system model. (3) Detection: Once the system model is established, 
the monitored traffic data is compared to the generated system model to identify 
potential matches. If the observed pattern aligns with an existing threat, an alarm is 
triggered. 

Numerous studies have been conducted on anomaly detection for SDN using 
machine learning approaches, encompassing both supervised and unsupervised 
strategies, across diverse domains [12]. Supervised learning-based classifiers, such 
as support vector machine (SVM), decision tree, naïve Bayes network, and random 
forests, have been successfully applied to detect unauthorized access. Further-
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more, unsupervised learning algorithms have demonstrated effective performance 
in addressing network intrusion detection problems. Designing a single machine 
learning approach that surpasses existing methods is currently challenging due 
to various factors, including imbalanced training datasets and high computational 
requirements. Consequently, hybrid machine learning approaches, such as combin-
ing clustering with classifiers and hierarchical classifiers, have garnered significant 
attention in recent years [5, 10]. 

2.1 Statistical Methods 

Statistical techniques in anomaly detection leverage statistical properties to establish 
the normal profile of transactions. These techniques utilize measures such as mean 
deviation and others to analyze the data. Unlike some other methods, statistical 
approaches do not rely on prior knowledge of specific attacks, making them effective 
in detecting new, previously unseen zero-day attacks. By constructing a probability 
distribution model, statistical approaches determine the deviation between observed 
traffic and the expected normal behavior. Objects that exhibit a low probability under 
the established probability distribution model are identified as outliers, indicating 
potential anomalies in the data. To summarize feature distributions, Entropy can be 
used as a measure of uncertainty and randomness. 

.EX =
∑n

i=1
−p(xi)log(xi), (1) 

where X is the feature that can take values .{x1, ..., xn} and .p(xi) is the probability 
mass function of the outcome . xi . Entropy is commonly utilized in DDoS detection to 
assess the randomness of incoming network packets. Higher entropy values indicate 
greater dispersion in traffic features, while lower values indicate more convergence. 
By measuring entropy, a decrease in randomness can be identified, such as in DoS 
attacks where multiple packets are targeted at the same IP address and port. This 
reduction in entropy can serve as an indicator for detecting such attacks [26]. 

Depending on the number of existing flows, entropy values can lead to substantial 
datasets. These values, represented as .En(X) and .Ea(X), indicate the entropy 
of features in the network’s normal and abnormal states, respectively. In normal 
conditions, the information entropy typically fluctuates within a limited range, 
experiencing both increases and decreases. However, during a DDoS attack, there 
is a significant surge in traffic directed towards a specific IP address, resulting in a 
decreased entropy value. In such cases, the condition .En(X) − Ea(X) > δ holds 
true. The detection of DDoS attacks using entropy relies on the window size and the 
threshold. The window size, determined based on either a specific time period or 
the number of packets, measures the uncertainty of incoming packets by calculating 
their entropy. An attack is identified when the calculated entropy exceeds or falls 
below a predetermined threshold, which is determined based on the selected scheme. 
The window size and threshold work together to enable the identification of attack
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patterns. The value of . δ is determined by the statistical information entropy of the 
network under normal operating conditions. Measuring conditional entropy enables 
the assessment of predictability between features and then network anomalies can be 
detected effectively. It quantifies the remaining uncertainty about the second feature 
given knowledge of the first feature. 

. E(src|dst) =
∑

j
−p(dstj )

∑
i
p(srci |dstj )log(p(srci |dstj )), (2) 

.p(dstj ) represents the percentage of packets arriving at a certain destination 
address j , or  .dstj , among examined packets. .p(srci |dstj ) is the proportion of 
packets originating from source address i in the total number of packets that 
are supposed to arrive at .dstj . All other combinations such as .E(src|length) and 
.E(src|dstP ) can also be achieved in the same manner, where length represents the 
length of the packet and .dstP represents the destination port. The utilization of 
entropy in traffic analysis offers enhanced detection capability compared to volume-
based methods [7]. Furthermore, the entropy method provides valuable information 
for classifying diverse anomalies. Modeling network behavior requires considering 
various time intervals. If there are variations in network behavior between intervals, 
it may indicate an ongoing attack. In addition to measuring uncertainty, it is impor-
tant to assess the disparity between the assumed and observed traffic distribution on 
the network. The difference between two probability distributions, A and O, over 
variables .x1, x2, ..., xn can be calculated using the following method: 

.KLD(O||A) =
∑n

i=1
−O(xi)log(O(xi)/ A(xi)). (3) 

The Kullback-Leibler (KL) divergence, also known as relative entropy, is a statis-
tical measure used to quantify the difference between two probability distributions. 
It provides a way to assess how far an observed distribution O deviates from a 
reference or assumed distribution A [2]. KL divergence value of 0 indicates that 
the observed distribution perfectly matches the reference distribution, while higher 
values indicate a greater dissimilarity [15]. In the context of anomaly detection, 
the KL divergence can be utilized to detect the initiation of new attacks as well as 
identify ongoing attacks [30]. This metric is particularly useful in capturing subtle 
anomalies, such as stealth port scans, even in the presence of background traffic [30]. 
By leveraging the KL divergence, traffic analysis approaches, such as Traffic Agent 
Controllers based on OpenFlow, can effectively monitor SDN-enabled switches and 
detect anomalies with lightweight statistical metrics [15]. 

2.2 Classification-Based Methods 

Classification is a supervised learning approach in machine learning, where classi-
fiers learn from labeled datasets and make predictions on new data. Classification 
algorithms are trained to assign data into predefined categories based on the
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features they possess. Support vector machines (SVM) is a supervised classification 
algorithm. In the context of network anomaly detection, SVM can be trained using 
normal network data to create a model. The model is then used to classify new 
instances of network data as either normal or anomalous. By finding the optimal 
hyperplane during the training process, SVM can effectively distinguish between 
normal and anomalous network behavior based on their proximity to the hyperplane. 
SVM is a popular choice for network anomaly detection due to its ability to 
handle high-dimensional data and its capacity to generalize well to new and unseen 
instances. Authors in [16, 29] proposed models to detect DDoS attacks in SDN 
by using the SVM algorithm to predict whether the traffic is abnormal or not. 
Evaluation results show a high detection rate and good performance with minimal 
additional overhead for SVM. 

2.3 Hybrid Approach 

In machine learning, there is no “one size fits all" algorithm, and combining multiple 
algorithms is often preferred for generalized applications to enhance accuracy, 
reduce variance, and prevent overfitting [36]. Hybrid classifiers integrate various 
machine learning techniques to improve performance. A hybrid machine learning 
approach combines two techniques, with the first one focusing on parameter 
tuning to enhance performance in the second phase, which is the classifier itself. 
Machine learning-based network IDSs have the capability to predict normal network 
behavior using input data. However, in real-world network environments, these 
systems encounter challenges when it comes to real-time detection. One of the main 
limitations is the absence of packet sniffers, which are crucial for capturing network 
traffic in real-time. The successful integration of packet sniffers with machine 
learning-based network IDSs has proven effective in achieving real-time detection 
capabilities. 

3 Deep Learning-Based Intrusion Detection Methods 

When comparing the outcomes of various machine learning-based IDS, DL-based 
IDS have exhibited superior performance in the context of SDN. While many 
machine learning algorithms are trained using supervised methods, which can yield 
satisfactory results in classification tasks, they may not be as effective in logic 
modeling scenarios[19, 28]. DL is a specialized branch of Machine Learning that 
revolves around the utilization of multi-layered artificial neural networks equipped 
with representation learning. It is anchored in the concept of artificial neural 
networks (ANNs) [9]. These ANNs are supplied with training algorithms and 
copious amounts of data to enhance the efficiency of the training process. The more 
extensive the dataset, the more effective the process becomes. The term “deep"
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learning derives from the fact that the neural network progressively encompasses 
additional layers over time. As the network delves deeper, its performance improves. 
Deep learning facilitates the algorithm’s capacity to grasp various levels of data 
representation and generalization. This approach has found successful applications 
in diverse domains such as visual object recognition, object detection, network 
intrusion detection, and many others. A deep learning algorithm can be trained in 
either a supervised or unsupervised manner. Essentially, a neural network emulates 
the structure and functionality of the human brain, comprising three successive 
layers of artificial neurons: the input layer, hidden layer(s), and output layer. 

Deep learning can be achieved through various architectural designs, including 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 
Deep Belief Networks (DBNs). CNNs may assign significance to various features 
or objects in data, and then distinguish between them. When compared to other 
classification methods, the amount of pre-processing needed by a CNN is much 
less. In [1], a hybrid IDS was developed by combining Convolutional Neural 
Networks and Long Short-Term Memory Networks (LSTM) [6]. The proposed 
model effectively captures both spatial and temporal features of network traffic, 
thereby improving the detection performance of zero-day attacks in Software-
Defined Networking environments. The effectiveness of using the CNN-LSTM 
model, along with the MLP model, for anomaly detection in SDN was also 
demonstrated by authors in [25], showing a high detection rate. RNNs are a type of 
deep neural network where connections between nodes form a directed graph along 
a time sequence. Authors in [35] proposed a Deep Learning (DL) approach, called 
DeepIDS, for network intrusion detection in SDN architecture. Their models were 
trained and tested using the NSL-KDD dataset, achieving an accuracy of .80.7% and 
.90% for the Fully Connected Deep Neural Network and the Gated Recurrent Neural 
Network (GRU-RNN), respectively. Their experiments confirmed the potential of 
the DL approach for flow-based anomaly detection in SDN environments. 

DBNs are a type of deep neural network composed of latent variables (hidden 
units) that exhibit interactions between layers rather than within units within each 
layer. Zhao et al. [37] presented a hybrid anomaly detection model based on DBNs 
and probabilistic neural networks. The DBN was trained without supervision and 
learned to probabilistically reconstruct the received inputs, effectively functioning 
as feature detectors. Their proposed model, combined with an algorithm, achieved 
a false alarm rate of .0.615%, accuracy of .93.25%, and detection rate of .99.14%. 
In another study by authors in [21], an intrusion detection engine was proposed 
with a DBN serving as the core component. Autoencoder have shown significant 
improvements in anomaly detection accuracy compared to Principal Component 
Analysis (PCA). Unlike linear PCA, autoencoders are capable of detecting subtle 
anomalies that may go unnoticed. Moreover, training autoencoders is straight-
forward and does not require computationally intensive operations like kernel 
PCA. Each layer of the autoencoder is implemented as a simple RNN layer. In 
the study conducted by Elsayed et al. [13], the authors addressed the limitations 
of traditional feed-forward neural networks by combining an autoencoder with 
an RNN. This integration resulted in a more powerful model with enhanced
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classification accuracy. The proposed model consists of two stages: an unsupervised 
pre-training stage and a fine-tuning stage. In the first stage, the goal is to extract 
useful feature representations from the input data through unsupervised learning. By 
optimizing the weight and bias values, the RNN-autoencoder is capable of learning 
hierarchical features from unlabeled data. The subsequent stage involves fine-tuning 
the network’s last layer using labeled samples in a supervised manner. 

4 Reinforcement Learning (RL) Techniques for IDSs 

In the realm of Reinforcement Learning (RL), a typical machine learning problem 
can be outlined as follows: An agent interacts with an environment, observing 
its current state and executing actions. In response to the agent’s actions, the 
environment provides a reward, which can be positive or negative. This sequential 
decision-making problem can be represented as a Markov Decision Process (MDP), 
comprising a state space, action space, transition probabilities, and a reward 
function. The agent’s objective is to acquire a policy that maximizes the cumulative 
reward over time. To accomplish this, the RL algorithm is employed by the agent 
to determine a policy consisting of a set of behaviors aimed at optimizing future 
rewards. By employing Bellman’s expectation equation and Bellman’s optimal-
ity equation, the MDP’s optimal value function and policy can be determined. 
Dynamic programming is commonly used to solve the Bellman equations, and 
it has evolved into techniques such as SARSA and Q-learning. Q-learning, a 
prominent RL algorithm, is highly favored due to its model-free nature, as it can 
operate without prior knowledge of future rewards or transition probabilities. It also 
incorporates off-policy methods, allowing it to learn about optimal policies while 
following behavioral policies. Therefore, Q-learning is well-suited for real-time 
system operation, considering uncertainties in future information [34]. In a related 
study [31], the authors propose an RL approach that involves collecting network 
metrics and grouping them into profiles. Each profile comprises a set of actions that 
utilize reinforcement learning, Network Function Virtualization (NFV), and an SDN 
controller to address problems. Policies for handling anomalies are defined based on 
the rewards associated with each action. 

To address the challenges associated with high-dimensional state spaces in Q-
learning, the combination of Reinforcement Learning with deep learning has given 
rise to a technique known as Deep Reinforcement Learning (DRL). The goal of DRL 
is to learn an optimal policy by leveraging a non-linear function approximator based 
on Multilayer Perceptrons (MLPs). This approximator captures the probability 
distribution of action strategies for a DRL agent, aiming to maximize the expected 
long-term reward [4]. One commonly utilized DRL algorithm is Deep Q-Network 
(DQN), which effectively tackles the complexities posed by intricate state spaces 
in Q-learning. In a related study [18], the authors propose a non-intrusive traffic 
sampling mechanism for multiple traffic analyzers in an SDN-capable network 
using a deep deterministic policy gradient, which is a representative DRL algorithm
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for continuous action control. The proposed system learns the policy for allocating 
sampling resources while considering the uncertainty in flow distribution based on 
the sampled traffic inspection outcomes obtained from multiple traffic analyzers. 

5 ML-Based Anomaly Detection on a Real SDN 

In this section, we present the details of our real test bed for SDN. Then we 
summarize some specific network intrusion detection methods on the given test bed. 

5.1 Entropy-KL IDS: A Statistical Intrusion Detection Method 

Relying solely on entropy as a detection measure may not be adequate due to its 
dependence on the chosen thresholds for attack detection. Similarly, using KL-
divergence alone may not be sufficient in scenarios where we need to identify 
a DoS attack while another attack is already in progress. This limitation arises 
from the inability of KL-divergence to differentiate between the start and end 
of different attacks. To overcome these limitations, combining entropy and KL-
divergence can significantly enhance the detection of DoS attacks. By considering 
both measures together, the detection system can effectively capture the distinctive 
characteristics of such attacks. It is worth noting that packets possess various 
features, and it is crucial to consider the relevant features and their correlations 
when developing an effective detection mechanism. In [23], the authors proposed a 
method that incorporates weights to merge entropy and KL-divergence, addressing 
the aforementioned issues. Upon receiving incoming traffic, the merging process 
of entropy and KL-divergence is performed on different features of the packets. 
The weighted results obtained from the combination of entropy and KL-divergence 
are then utilized in ensemble learning. The weights assigned to the features can 
be determined based on their importance or correlation. Figure 2 illustrates the 
combination approach of entropy and KL-divergence with different features. The 
components collectively contribute to the final decision regarding the status of 
network traffic. The merging process of entropy and KL-divergence is performed 
on distinct features of the incoming packets. The weighted outcomes of this 
combination serve as new features for the classifiers. For instance, in the ensemble 
learning section of this framework, if an SVM classifier is employed, the values . w1, 
. w2, . w3, . w4, and . w5 would be determined by the SVM classifier. 

The proposed framework incorporates ensemble learning to achieve more accu-
rate abnormal flow detection. By leveraging ensemble learning, multiple learning 
algorithms are employed to obtain superior predictions compared to individual 
learning algorithms used in isolation. Ensemble machine learning aids in determin-
ing the importance of features and yields precise results in the anomaly detection 
process. Furthermore, the ensemble method enables a better understanding of the
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Fig. 2 Hybrid anomaly 
detection method 

selection process and provides less biased estimates of membership probabilities 
within each feature group. Weights in the framework can be established based 
on the significance or correlation of the given features and the specific problem 
at hand. Many current DDoS detection methods in a single control plane rely 
on machine learning techniques, which have proven to be effective classifiers. In 
this study, ensemble learning [17, 38] is incorporated to enhance the accuracy 
of abnormal flow detection. By employing ensemble learning, multiple learning 
algorithms are combined to generate predictions that outperform those of individual 
algorithms when used alone. In the proposed framework, named Entropy-KL-ML, 
the final decision is reached through the collaboration of multiple base components. 
Each group of features contributes to creating a new feature for the classifiers by 
combining the results of entropy and KL-divergence. For example, if an SVM 
classifier is included in the ensemble learning section of this framework, the values 
assigned to . w1, . w2, . w3, . w4, and . w5 would be determined by the SVM classifier. 
Ensemble machine learning facilitates the identification of feature importance 
and ensures accurate results in the anomaly detection process. Determining the 
most effective feature distributions remains unclear, as various feature distributions 
have been proposed in the past. However, several recommended features demon-
strate efficacy, including header-based features such as addresses, ports, and flags, 
volume-based features such as host-specific percentages of flows, packets, and 
bytes, and behavior-based features such as in/out connections for a particular host. 
Considering combinations and relationships between different features of packets 
and flows, such as packet type, .srcI , .dstI , .(srcI , srcP ), .(srcI , dstP ), .(dstI , srcP ), 
.(dstP , srcP ), and .(srcP , L), can provide valuable insights in this regard. 

5.2 Sample-Based RL Intrusion Detection Method 

Given the potential loss of valuable information in uncaptured network traffic, 
determining sampling points and rates remains crucial. Once the sampling points 
and rates are established, the sampled traffic needs to be directed to one of several 
traffic analyzers for a thorough inspection. It is important to note, however, that
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Fig. 3 Cyber-AnDe 
framework 

this process may introduce additional overhead in terms of network delivery. To 
address these limitations and ensure the representativeness of the captured network 
behavior, a cybersecurity framework for SDN traffic monitoring has been developed. 
The proposed Cyber-AnDe framework, presented in Fig. 3, includes the following 
key components: 

1. Traffic Sample Repository (TSR): This module collects the sampled traffic flows 
from the sampling switches of the data plane. 

2. Behavior Monitor Application (BMA): This module is responsible for checking 
the sampled traffic’s fields and identifying the headers. BMA can easily observe 
the packet’s structure. It can roughly estimate the flow number and aggregate 
statistics, which can be helpful to detect anomalies. 

3. Sampler Scheduler Application (SSA): This module determines the sampling 
strategy, i.e., which flow should be sampled by which switch and at what rate. 

This framework incorporates two key algorithms that mitigate the impact on 
captured network behavior: (1) Switch selection algorithm: This algorithm selects 
switches based on their capacity to cover all incoming traffic, ensuring com-
prehensive coverage. (2) Sampling algorithm: This adaptive-distributed algorithm 
dynamically determines the optimal sampling rate based on the flow’s current state. 
It effectively reduces the volume of traffic that needs to be analyzed, optimizing 
resource utilization. 

BMA plays a crucial role in analyzing and reporting on the behavior of sampled 
traffic, as well as the specific features used in its assessment. These reports are then 
shared with both the SSA responsible for controlling sampling rates on switches in 
the data plane, and the controller. Based on the received reports from the BMA and 
SSA, the controller continuously makes informed decisions regarding which flows 
should be sampled on each switch and at what rate. It’s important to note that these 
decision-making processes are centralized and ongoing, ensuring effective traffic 
management. When the BMA module receives sampled traffic from the TSR, it 
undertakes the processing and analysis of this data. Specifically, the BMA module 
focuses on examining packet header features such as source IP, destination IP,
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Fig. 4 ML_Subsystem 

source port, destination port, transport protocol, flow size, and packet count fields. 
These features provide valuable insights into the current state of the traffic being 
monitored. 

Following the sampling of traffic, BMA plays a vital role in generating a 
comprehensive report on the behavior and flow statistics of the sampled traffic. This 
report is shared with both the controller and SSA within the ML subsystem, as 
depicted in Fig. 4. Upon receiving input from the BMA, the SSA module adjusts the 
sampling rate accordingly. While a higher sampling rate is generally preferred as it 
improves the accuracy of malicious traffic detection by the controller, caution must 
be exercised. Indiscriminately increasing the sampling rate can lead to diminishing 
returns due to network congestion and increased overhead on the sampling switches 
and controller. To address this, the proposed Cyber-AnDe framework employs 
an adaptive distributed sampling method. It starts with a minimum sampling rate 
and gradually increases the sample size until no further improvement in detection 
accuracy can be achieved. The SSA module also provides recommendations to the 
controller regarding the appropriate sampling strategies to be employed on different 
switches. Drawing upon the input received from both the SSA and BMA modules, 
the controller makes informed decisions on the switches and sampling rates for the 
flows to be sampled. This ensures efficient and effective flow monitoring within the 
network. 

The flows to be sampled, the sampling rates, and the sampling locations (i.e., 
switch locations) are determined by the controller such that the total network 
sampling utility is maximized without exceeding the sampling capacity constraint 
of each switch and the added overhead for the controller to manage the network. 
Ideally, the controller should employ different strategies for handling legitimate, 
suspicious, and malicious traffic. When the BMA, in its report, identifies flow f as 
legitimate, the controller sends a message to the associated switch to stop sampling 
f . Subsequently, no additional samples of f are sent to TSR from that switch. 
In the event flow f is identified as malicious in the BMA report, the controller 
will set up block actions on the flow tables for f . We would like to note that the 
forwarding rules are maintained within the flow tables on the SDN switches. A 
flow table typically includes fields that are used to identify a flow and specifies 
the corresponding action to take on that flow’s packets. Finally, if f is identified 
as suspicious in the BMA report, the controller continues sampling f until it can
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Fig. 5 Closed control loop of the Cyber-AnDe 

accurately determine the status of f as either legitimate or malicious. In the case of 
suspicious traffic, the controller continues sampling until it can accurately determine 
the traffic’s status. Figure 5 illustrates the RL control loop and stopping points. RL 
is a sub-field of machine learning that addresses the problem of learning optimal 
decisions over time. Based on the status that RL determines, the corresponding 
action to take can be one of: (1) Increasing the sampling rate, (2) Stopping the 
sampling rate, and (3) Adding an assistant switch. 

The controller plays a crucial role in determining the sampling strategy for 
flows, including the sampling rates and locations (i.e., switch locations), while 
ensuring that the overall network sampling utility is maximized. This is done 
without exceeding the sampling capacity constraints of individual switches and 
minimizing the overhead for the controller’s network management. It is ideal for the 
controller to employ different strategies to handle flows categorized as “legitimate," 
“suspicious," or “malicious." When the BMA identifies a flow as legitimate in its 
report, the controller instructs the associated switch to stop sampling that particular 
flow. Consequently, no further samples of that flow are sent to the TSR from that 
switch. In the case of a flow being identified as malicious in the BMA report, the 
controller takes action by setting up block rules in the flow tables of the SDN 
switches. These flow tables contain information to identify a flow and specify the 
appropriate action to be taken for the packets belonging to that flow. It is important 
to note that the forwarding rules, including blocking actions, are maintained within 
the flow tables of the SDN switches. Finally, if a flow is labeled as suspicious in 
the BMA report, the controller continues sampling that flow until it can accurately 
determine whether the traffic is legitimate or malicious. In the case of suspicious 
traffic, the controller persists in sampling until a conclusive determination of the 
traffic’s status can be made. Figure 5 provides an illustration of the Reinforcement 
Learning (RL) control loop and the various decision points. RL, a sub-field of 
machine learning, focuses on learning optimal decisions over time. Based on the 
status determined by RL, the controller can take different actions, such as increasing 
the sampling rate, stopping the sampling rate, or adding an assistant switch to 
improve the sampling process. 

In RL, the reward reflects the success of the agent’s recent activity and not all the 
successes achieved by the agent so far. In our approach, the agent’s objective is to 
learn the policy of monitoring the traffic that maximizes the expected detection rate 
and guarantees minimum overhead for the controller. RL would be helpful based 
on the traffic status on the given switch, which is based on the average rate of
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received traffic and the average rate of loss traffic. We formulate the average rate 
of traffic .R(t) as .(Rp(t) − Rp(t − τ))/ (t − τ), where .Rp(t) is received traffic rate 
at time t and . τ denotes the end of the previous time interval. The average loss of 
traffic .L(t) can be formulated as .(Rp(t − τ) − Tp(t − τ))/ Rp(t − τ), where . Tp(t)

represents the transmission rate of traffic at time t . The observed state of a switch is 
denoted as follows: .state = {(R1(t),L1(t)), ...(Rn(t),Ln(t))}. We define actions 
of reallocation as 1) New allocation (extra space) for control at time t and 2) New 
allocation (extra space) for data at time t . Here, the aim of RL is to minimize the 
penalty, which is the cost of lack of space. The Q function is defined as: 

. Qt+1(st , at ) = (1 − α)(Qt(st , at ) + α(P (st , at ) + λmax
at+1

Q(st+1, at+1)), (4) 

where .P(st , at ) is the penalty function, and the value of penalty can be calculated by 
.C ×Rp(t)/bp(t) where .Rp(t) and .bp(t) represent the current rate and the allocated 
rate, respectively. Minimizing the probability of capture failure is the objective 
of the sampling methods. We can formulate the objective as . minγ {maxf pf } =
minγ {maxf

∏
s pf,s}. We need to evaluate the framework’s performance with 

different sampling rates resulting from applications. We define a utility function 
.Uf (s, f, γ ) to find the best option to the current system for sampling flow f in 
switch s using rate . γ . The utility function can be defined as follows: 

. Uf (s, f, γ ) =
∑

s∈S

∑
f ∈F

(α · G(fs, rs, γf ) − β · M(f ) − ζ · P(T , τ )),

(5) 

where .G(fs, rf , γf ) denotes the function computing the accuracy of detection 
of flow . fs on the given switch s with data rate . rf and sampling rate . γf . The  
function . M represents the cost value for computation/processing of flow f and 
communication between components. The function . P represents the penalty, which 
is based on the delay in this approach. This utility function helps the controller to 
find .[switch, flow, rate] by considering the capacity limitation of the TSR. We can 
formulate this problem as an optimization problem: 

.

maximize : Uf (s, f, γ )

subject to :
∑

f ∈F
rf · γs ≤ C for each s ∈ S

∑
s∈S

sf ≥ 1 for each f ∈ F.

(6) 

5.3 Deploying Chain of IDS in Data Plane 

Each of these flows will be redirected through some IDSs in order to perform 
intrusion detection. Grouping incoming flows and using the same path for the
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Fig. 6 Redirecting traffic 
through a chain of IDSs 

flows in the same group can reduce this delay. Upon entry into the network, 
the classifier first categorizes the traffic pattern into suitable categories, then it 
assigns the IDS chain that is most appropriate to that traffic pattern. New arrival 
flows can be determined immediately, allowing the controller to deal with traffic 
dynamics [22]. A high volume of traffic in an SDN environment can overwhelm the 
controller, leading to network downtime. To address this issue, we propose a novel 
approach where data plane switches take on security functions as part of their packet 
processing logic. Figure 6 provides an overview of the SDN architecture, including 
the application layer, control plane, and data plane. In this network, we have flows 
such as . f1 and . f2, where .f1 : s1 −→ d1 and .f2 : s2 −→ d2. Each flow is redirected 
through appropriate IDSs for intrusion detection. This alleviates the burden on the 
controller, which typically handles multiple applications. By deploying IDS on 
selected switches in the data plane, we can significantly reduce the controller’s 
workload. Moreover, having a larger number of IDSs increases the likelihood of 
detecting attacks for a given traffic flow. However, directing flows through specific 
paths that include IDSs can result in increased transmission delay. By grouping 
incoming flows and routing flows within the same group through the same path, 
we can reduce this delay. Upon entering the network, the classifier categorizes the 
traffic pattern and assigns the most suitable IDS chain for that particular pattern. 
This approach enables prompt identification of new incoming flows, allowing the 
controller to effectively handle traffic dynamics [22]. 

Figure 7 illustrates an example for three clusters and three IDS chains. Figure 7a 
shows the shortest path method, which calculates the distance between sources 
and destinations of flows and initial centroids. We have the distance measurement 
.dis(sj , sk) + dis(dj , dk), and flows would be divided into three clusters with 
centroids .{c1, c2, c3}. The GroupFlows would be assigned to the IDS chain based 
on the shortest hop count. Figure 7 shows .f1(s1, d1), .f2(s2, d2), and .f5(s5, d5) are 
assigned to the first IDS chain based on the shortest path. .f3(s3, d3) is assigned to 
the second IDS chain. .f4(s4, d4) and .f6(s6, d6) are assigned to the third IDS chain. 
Balanced clustering involves ensuring that there is an equal number of points in each 
cluster. Our approach is different from common techniques. To check if the groups 
are balanced, we use the total data rate of the groups instead of the number of group
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Fig. 7 Assigning IDS chain to the grouped incoming traffic. (a) Shortest path. (b) Balancing. (c) 
Perfect matching 

members. For this example, Fig. 7a shows that . c1 has three members, . c2 has only 
one member, and . c3 has two members. In order to make a balance for the amount 
of processing on each IDS chain, we make a balance for the total amount of traffic 
in each group. The weight of a group can be defined as .Wi = ∑

f ∈Fi
ni .wf . For  

this example, we assumed that the data rate of flow is the same; therefore, balancing 
would be based on the total number of members in each group. Figure 7b shows  
the balanced groups. Figure 7c shows the assigning of the heads and tails of the 
IDS chains to the source and destination of the centroids. . hi is the head of IDS 
chain i, and . ti is the tail of this IDS chain. All flows in a cluster k get a virtual 
center, including source . sk and destination . dk . For the matching, which is assigning 
. sk to . hi and assigning . dk to . tj , where . hi and . tj are the head and tail of two different 
IDS chains. In these types of IDS chain, there are cross-connections between IDS 
chains. Based on the perfect matching algorithm, each balanced GroupFlow will 
be assigned to head and tail based on the smallest number of hops, which is the 
summation of the number of hops between the source to the head of the chain, the 
number of hops between head and tail, and the number of hops between the tail of 
chain and the destination. In the real test bed, we consider network delay, which is 
based on the number of hops and congestion on links. 

Problem 1 The objective is to group incoming traffic in a balanced manner in order 
to reduce transmission delay. Two important factors to consider are the distance of 
flows to the centroid of each cluster and the total amount of traffic within each 
cluster. It is worth noting that this problem is NP-hard. To address it, we propose 
an approximation approach using a modified version of the K-means clustering
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algorithm. We formulate the grouping incoming traffic problem as an optimization 
problem with the goal of minimizing overhead or cost. 

.

min
∑

Fj ∈F
cost (Fj )

subject to cost (Fj ) = |Fj | ·
∑

f ∈Fj

rf .

(7) 

Here, .cost (Fj ) represents the cost of clustering incoming traffic f . The cost 
factor reflects the additional workload imposed on the controller when grouping 
incoming traffic. It is calculated based on the total number of flows and the traffic 
rate, denoted as . rf , within each cluster . Fj . We assume a simplified scenario where 
. rf is equal to 1. 

Problem 2 Determine the optimal assignment of IDS chains to flow groups to 
minimize the number of malicious packets, ensuring that all traffic passes through 
an IDS chain before reaching the destination. It is assumed that the locations of IDS 
chains are predetermined. The problem can be expressed as the following: 

.

min
∑

i∈I
cost (I )

subject to cost (I ) =
∑

Mj,i=1
Rj ∗ min dist (Fj , Ii)

Rj =
∑

f ∈Fj

rf , 1 ≤ |Ii |.

(8) 

.cost (I ) represents the cost of assigning a flow group to an IDS chain . Ii . This  
is based on the total traffic rate of each flow group and the distance between the 
centroid of the flow group and the IDS chain. . Rj denotes the total traffic rate of 
flow group j . . rf denotes the data rate of flow f . The distance between IDS chain I 
and flow group . Fj is shown by .dist (Fj , Ii), which is the number of hops between 
. hi and . sj . .Mj,i is a matrix that shows each flow group . Fj is assigned to which . Ii . 

6 Measurements 

The evaluation or assessment of a system, mechanism, or method typically repre-
sents a momentary depiction of its quality or accuracy. Over time, as the system is 
established and the environment evolves, new vulnerabilities emerge, necessitating 
a reassessment that includes parameter tuning. Nevertheless, it is important to note 
that the information acquired during an initial evaluation process holds substantial 
importance in subsequent evaluations. While most supervised machine learning 
algorithms excel in classification tasks, their proficiency in logic modeling may 
be limited. In contrast, DL-based approaches have surpassed traditional machine 
learning techniques in logic modeling, demonstrating superior performance.
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6.1 Effectiveness 

When evaluating the performance of an anomaly detection model, it is important 
to consider different types of classification errors. Relying solely on the traditional 
accuracy metric, which measures the total number of correct classifications divided 
by the total number of classifications, is insufficient for accurately assessing the skill 
of an anomaly detection model. That classification (or prediction) result is divided 
into four classes: 

• True positive (TP): Identified anomaly occurrence correctly as an anomaly. 
• False positive (FP): Identified regular occurrence wrongly as an anomaly. 
• True negative (TN): Identified normal occurrence correctly as normal. 
• False negative (FN): Identified anomaly occurrence wrongly as normal. 
• Accuracy provides an overall measure of the model’s performance in terms of 

correctly classifying both positive and negative instances, which is obtained by 
.ACC = (T P + T N)/(T P + T N + FP + FN). 

6.2 Efficiency 

In network anomaly detection, it is important to have a fast and efficient algorithm 
that can quickly process large amounts of network data in real-time. If the 
processing time is too long, the algorithm may not be able to detect anomalies in a 
timely manner, which can result in security breaches or other issues. The processing 
time of a network anomaly detection algorithm can be influenced by various factors, 
such as the size of the data, the complexity of the algorithm, the hardware used, and 
the implementation of the algorithm. A trade-off often exists between processing 
time and accuracy, so it’s important to find a balance between the two in order 
to have an efficient network anomaly detection system. Therefore, processing time 
should be considered along with other metrics such as accuracy, precision, recall, 
and F1 score when evaluating the efficiency of network anomaly detection methods. 
In order to select the most suitable evaluation measures for an anomaly detection 
method, it is important to consider the specific goals of the method as well as the 
associated costs of false positives and false negatives. When aiming to optimize 
precision, one may prioritize reducing human workload or minimizing the cost of 
failure. In contrast, optimizing for high recall may be more appropriate when the 
cost of a false negative is high. To strike a balance between precision and recall, the 
detection threshold can be adjusted according to the desired trade-off.
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Fig. 8 SDN topology 

6.3 Evaluation of Specific Intrusion Detection Methods on 
SDN 

Our data center, illustrated in Fig. 8, consists of the following components: 35 
servers, 15 SDN switches, and 4 regular L2 switches. The servers, excluding the 
Gateway, are Dell PowerEdge 210 servers with the following specifications: a 2-
core 2.4 GHz processor, 4 GB RAM, 500 GB storage, and a minimum of 2 gigabit 
Ethernet ports. To establish the network infrastructure, we have set up two distinct 
networks: a control network and a data network. In the control network, an L2 switch 
connects all the management ports of the SDN switches and the SDN controller. 
The SDN switches are configured as out-of-band controllers, which effectively 
decouples the control and data planes. As a result, our control network follows 
a star topology. In the data network, the data ports of the SDN switches and the 
Gateway are interconnected, forming a three-level complete binary tree topology. 
The Gateway is linked to the root SDN switch, while the remaining servers are 
connected to the leaf SDN switches. In this section, we conduct an assessment 
of specific intrusion methods and present the results obtained. Our experimental 
setup, depicted in Fig. 8, utilizes the ONOS as the SDN controller and Mininet for 
creating diverse network topologies. Mininet allows for the creation of realistic 
virtual networks with authentic kernel, switch, and application code, facilitating 
the development of OpenFlow applications. Both ONOS and Mininet are operated 
on a Windows desktop equipped with a 3.5GHz Intel Core i3 CPU and 16GB of 
memory. To evaluate the detection of DoS attacks, we generate a consistent flow 
rate between each pair of hosts in the network. During the experiment, normal traffic 
is injected into the network using scapy, followed by the launch of a DoS attack 
from a switch to a host. Various ML algorithms and feature selection methods are 
employed for the detection of DoS attacks. The performance of these algorithms 
is evaluated using metrics such as processing time, overhead, FPR, and accuracy. 
FPR is the probability of misclassifying a packet as normal when it is actually an 
attack. The evaluation of accuracy considers the ability of the classifier to correctly 
classify samples in relation to the total number of samples, providing insights into 
the discrimination capabilities of the classifier. The evaluation encompasses various



140 N. Niknami and J. Wu

Fig. 9 Detection rate under different groups of features on different window time. (a) Attack rate 
.35%. (b) Attack rate . 80%

Table 1 Feature selection . # Group No. features Selected features 

1 1 features . E(srcI |dstI )

2 2 features .EsrcI
, . EdstI

3 4 features .EsrcP
, .EdstP , .EsrcI

, . EdstI

4 5 features .EsrcP
, .EdstP , .EsrcI

, .EdstI , . ES

5 6 features .EsrcP
, .EdstP , .EsrcI

, .EdstI , . ES , R 

scenarios, including different detection methods, network topologies, and attack 
rates. 

The controller fulfills its role by retrieving data from switches’ flow tables, 
enabling the monitoring of active flows and tracking packet counts for each flow. 
In this research, we propose harnessing this capability to incorporate feature 
processing into the decision-making process. A significant factor to consider is the 
duration of the monitoring window. We will assess the performance of our proposed 
combined detection method by evaluating its detection rate and comparing it to the 
grouping approach. Figure 9 illustrates the detection rate of the Entropy-KL-ML 
anomaly detector across various scenarios with different attack rates, utilizing the 
feature groups summarized in Table 1. Our experimental findings demonstrate that 
an increased number of features leads to enhanced performance. The combination of 
KL-divergence and entropy effectively addresses the uncertainties associated with 
entropy thresholds, resulting in improved accuracy and decreased false positive rate 
(FPR) in anomaly detection. 

Furthermore, the employment of ensemble learning in conjunction with our 
proposed feature selection enhances the detection outcomes across diverse scenar-
ios. While the impact of network topology on anomaly detection is minimal, the 
choice of classifier significantly influences the results. Table 2 presents a comparison 
between a single IDS and multiple IDSs in terms of their detection rates, dropping 
rates, and delays. The incoming traffic is categorized as small, medium, or large 
based on its total volume, with 500 flows classified as small, 2000 flows as medium, 
and 8000 flows as large. We conducted various measurements under different 
attack rates of 20, 50, and .80%. The results indicate that deploying multiple IDSs
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Table 2 Evaluating IDS under one IDS vs multiple IDSs 

Detection rate(%) Dropping rate(%) Delay (ms) 

Traffic 
Attack 
rate 1 IDS  2 IDS  Mixed 1 IDS  2 IDS  Mixed 1 IDS  2 IDS  Mixed 

Small 20% 36.6 48 52 24.9 26.3 25 1.8 3.45 3.3 

50% 47.5 55 60 25.5 26.9 26.2 3.6 6.9 6.45 

80% 52 69 72 24.8 26.7 25.1 6.1 11.31 10.8 

Medium 20% 49.3 64.5 74.5 28.7 30.5 29.9 5.55 9.99 9.57 
50% 60.3 71 73 28 29.5 28.9 7.1 15 14.1 
80% 72 81 83 28.9 32 31.5 13.5 24.9 24.51 

Large 20% 61.8 80.3 85 31.2 34 32.7 9.6 17.4 16.5 
50% 74.1 86 91 34.5 36.3 35.18 17.1 33.3 32.82 
80% 81 92 94.3 35 37.5 38.7 30 54.6 54 

Table 3 Evaluating IDS under different amounts of incoming traffic 

Overhead .(%) Dropping rate .(%) Detection rate .(%) Delay (ms) 

Anomaly detection S M L S M L S M L S M L 

Centralized IDS 7 12 27 .32.6 37 .43.2 .39.4 .53.3 .68.3 .2.7 .5.3 . 19.2

Chain with one IDS .10.2 .12.3 .17.8 31 .28.5 .33.8 .38.5 .60.3 .74.1 .3.6 .7.1 . 23.1

Chain with two IDS .10.3 .12.3 18 .32.9 .31.5 .35.6 55 71 86 .9.6 15 . 30.3

has a positive impact on the detection rate of malicious packets, resulting in a 
lower missing rate. However, it also leads to a higher dropping rate. Although the 
utilization of multiple IDSs increases the delay time compared to a single IDS, 
the increase is not significant. This is because previous IDSs block or drop certain 
portions of traffic, resulting in a reduced volume of incoming data for subsequent 
IDSs. Moreover, an increase in the attack rate enhances the detection rate and 
reduces the missing rate. The number of samples plays a crucial role in the detection 
capability of an IDS, as a larger sample size increases the likelihood of detecting 
attack packets. Interestingly, our results indicate that the attack rate does not have 
an impact on the dropping rate. The dropping rate of packets is primarily influenced 
by the capacity limitations of switches and is not affected by the proportion of 
malicious packets in the network. However, when the attack rate increases, it results 
in an elevated delay as switches must notify the controller for necessary actions. In 
scenarios with high traffic volumes, the detection rate, missing rate, and dropping 
rate all tend to rise due to the greater occurrence of attacks. 

Table 3 provides an overview of deploying IDS in both the control plane and 
the data plane, considering various metrics such as overhead, missing rate, dropping 
rate, detection rate, and delay. The evaluation of IDS deployment in the data plane 
takes into account the volume of incoming traffic, while the number of IDSs in 
each chain affects all the evaluation metrics. The experimental results presented in 
Fig. 10 demonstrate that the Entropy-KL-ML method achieves the highest accuracy 
compared to other anomaly detection approaches, including pure entropy, pure ML,



142 N. Niknami and J. Wu

Fig. 10 Evaluation of different ML-based anomaly detection methods. (a) Processing time. (b) 
Overhead. (c) Accuracy. (e) FPR 

and the combination of entropy and KL-divergence. Although the combined method 
exhibits slightly longer processing time, as shown in Fig. 10a, the difference is not 
significant and remains within acceptable limits. In terms of CPU utilization, as 
depicted in Fig. 10b, all approaches show increased CPU usage with an increasing 
number of flows. However, the Entropy-KL-ML approach utilizes CPU resources at 
a significantly lower rate compared to the other methods. Despite a slight increase 
in overhead on the controller when incorporating KL-divergence with entropy, 
the Entropy-KL-ML method, with its unique combination of Entropy-KL and ML 
algorithms along with additional feature processing, consistently outperforms other 
methods in terms of accuracy. The results in Fig. 10c, d reveal that the Entropy-
KL-ML approach achieves higher accuracy (approximately .91.9%) and lower false 
positive rate (approximately .0.055%) compared to other approaches. The Entropy-
KL approach also demonstrates acceptable accuracy (around .81.7%). However, 
the combination of ensemble learning with Entropy-KL in the proposed approach 
enhances the decision-making process of anomaly detectors. Despite the higher 
processing time, the Entropy-KL-ML approach stands out as a distinctive and 
effective anomaly detector due to its high accuracy and low false positive rate. 

In our experimental study, we investigated the influence of network topology 
on anomaly detection and compared the accuracy of various machine learning 
classifiers. We examined two simulated topologies: Stanford and FatTree(4). The 
Stanford topology consisted of 26 switches, 26 hosts, and 650 flows, with each 
switch connected to a single host. On the other hand, the FatTree(4) topology had
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Fig. 11 Evaluating the detection rate of different classifiers under different rate of attack. (a) 
Standford. (b) FatTree(4) 

20 switches, 16 hosts, and 240 flows, with each edge switch connected to a single 
host. We generated flows between host pairs at the same rate in both networks. 
Based on the results shown in Fig. 11, we observed that the network topology 
had minimal impact on the performance of anomaly detection. Furthermore, we 
conducted evaluations using different classifiers and found that SVM demonstrated 
excellent performance in accurately predicting the decision function to differentiate 
between normal and anomalous classes. Other classifiers also exhibited comparable 
performance, particularly when the attack rate was set at .80%. 

7 Conclusion 

This chapter provides a review of ML and DL techniques for network anomaly 
detection. ML-based approaches enhance the accuracy of IDS. Various ML and DL-
based intrusion detection mechanisms are discussed, emphasizing the use of SDN 
for vulnerability detection and network monitoring. Challenges include identifying 
attack sources, handling high network traffic volumes, and responding effectively 
to attacks. Intelligent security methods based on ML and DL are more effective 
than traditional approaches, with DL techniques being particularly efficient in 
evaluating network security. Ongoing research focuses on the adaptability of detec-
tion methods, feature selection, and utilizing DL for dataset classification. Hybrid 
approaches and DL techniques show promise in detecting network anomalies. 
Runtime limitations are a major challenge for NIDS. Real-time NIDS systems 
should capture and analyze each packet in line with the current network scenario 
to ensure seamless packet flow and accurate detection. Minimizing false alarms 
is a crucial objective for an effective intrusion detection method or NIDS. While 
completely eliminating false alarms may be challenging for anomaly-based systems, 
it is essential to strive for zero false alarms in all environments. Additionally, 
the system should be adaptable at runtime. Meeting these objectives poses a 
demanding task for the NIDS development community. As intruders continuously
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modify their network attacks to circumvent existing intrusion detection solutions, 
the characteristics of anomalies undergo constant change. Therefore, it is imperative 
that the adaptability of a NIDS or detection method remains up-to-date with the 
current anomalies that arise within the local network or on the internet. In the context 
of distributed attacks, where multiple machines can be compromised rapidly, the 
immediate damage to the network can be significant. To effectively mitigate such 
attacks, a NIDS must not only detect them early, but also have the capability to 
control the attack rate without disrupting the service for legitimate users. This 
objective poses a considerable challenge for NIDS development. 
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Deep Learning for Robust and Secure 
Wireless Communications 

Hai N. Nguyen and Guevara Noubir 

1 Introduction 

The development of mobile technologies and wireless communications has led to 
a profound revolution in society. Today, mobile phones are used by billions of 
people worldwide to access information, connect on social media, and engage in 
various daily activities. This rapid progress is fueled by advancements in wireless 
communications, including increased throughput and reductions in size and power 
consumption. Wireless integration in everyday devices has significantly impacted 
system design and operation, leading to a surge in wireless connectivity and 
a decrease in wired links. This shift is particularly evident in critical Cyber-
Physical systems, such as the use of Wireless Remote Terminal Unit (RTU) in 
the monitoring and control of SCADA systems including the electricity grid and 
industrial processes. 

Effective communication that is both secure and reliable is crucial in modern 
wireless systems. However, there are various challenges that must be overcome to 
achieve this goal. With the emergence of new applications such as Massive IoT 
(MIoT), robotics, autonomous cars, and augmented reality, the demand for spectrum 
has increased significantly. This trend has led to spectrum scarcity and uninten-
tionnal interference, ultimately degrading communication quality. Furthermore, 
wireless protocols are today widely implemented in software, and Software-Defined 
Radio platforms are increasingly capable, with small form factor and low cost (e.g., 
XTRX platform achieves 120 Msps, 2x2 MIMO, and integrated a GPSDO and 
FPGA in a mini PCI form factor [15]). This trend, while creating new opportunities 
for developing sophisticated communication techniques, poses new challenges for 
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spectrum management and security against wireless threats, from smart jammers, 
compromised wireless chips [41], to weaponized drones [13, 47]. More specifically, 
powerful jammers that can disrupt wireless communications have been increasingly 
capable to achieve. They can be implemented on Mica2 WSN platform [58] or  
software-defined radios [33], or can be found on the Internet for a few dozens of 
dollars. These challenges, coupled with the complex natural artifacts of wireless 
channels, such as propagation loss, fading, and shadowing, make achieving robust 
and secure wireless communication extremely difficult. 

Deep Learning (DL) has recently achieved significant success, demonstrating 
impressive performance across a variety of research areas, including computer 
vision [24], speech recognition [19], and natural language processing [57], as well 
as mastering complex games like Dota 2 [1] and Go [49]. This success has inspired 
innovation in DL-based wireless communications. One of the primary advantages 
of DL is the ability to learn complex relationships between variables through large 
amounts of data. This allows us to leverage the vast and diverse raw data collected 
through a variety of wireless sensors, and to design communication systems without 
needing accurate mathematical models. Moreover, with the emergence of parallel 
computing accelerators such as NVIDIA GPU with CUDA [37], Google TPU [18], 
or Intel Nervana [21], even sophisticated DL models are now becoming possible 
to deploy for real-time systems. Our research presented in this chapter is inspired 
by such potentials of Deep Learning. We focus on improving the robustness and 
security of wireless communications through a three-pronged approach, presented 
in the rest of the chapter as follows. 

Identifying Emissions and Collisions Section 2 studies Deep Learning-based 
methods for identifying different types of RF emissions and collisions in the 
wideband spectrum. Detecting wireless collisions is essential in determining if the 
degradation of a communication link is due to adversarial collisions (i.e. caused by 
jammers) or collisions with harmless users. Furthermore, identifying the character-
istics of those interference sources, such as RF technologies, transmission time, or 
frequency slots, is a crucial first step to improve the robustness of communications. 
We first study how to transform RF data into visual data with a multi-channel 
image-based spectral representation. Then, a collision detection approach using the 
VGG-16 neural network [50] is presented. Furthermore, the section presents the 
application of YOLO algorithm in expanding the approach for the simultaneous 
classification and localization of emissions in the 100 MHz spectrum, resulting in 
the development of the real-time identification system WRIST [35, 36]. 

Canceling Adversarial Interference In Sect. 3, we focus on the countermeasure 
against adversarial interference, specifically from jammers. When a jamming 
signal successfully interferes with communication, traditional spread spectrum and 
jammer avoidance techniques become ineffective. To recover communication in 
such scenarios, it is necessary to remove the jamming component from the received 
signal. We propose a jamming cancellation system called JaX, which utilizes 
Convolutional Neural Network to infer the existence of interference, the number 
of interfering emissions and their respective phases. Our system eliminates the
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requirement of explicit channel estimation schemes such as pilot or reference signal. 
Additionally, we present experimental studies to evaluate the effectiveness of our 
anti-jamming approach against different types of high-power jammers. 

Enhancing Received Signal Section 4 introduces DEFORM, a universal beam-
forming system that leverages the diversity of multiple receiving antennas to 
optimally improve the quality of various types of transmitted signals. We explore the 
design of a deep neural network that accurately estimates the optimal beamforming 
parameters. In addition, special features of the design, which specifically address the 
ambiguous . 2π phase discontinuity of RF complex samples and the high sensitivity 
of the link Bit Error Rate, are presented. We demonstrate the universality of the 
system through extensive numerical and experimental analysis, as well as in a 
beamforming-relay application for LoRa and ZigBee. 

2 Deep Learning for Identifying RF Emissions and Collisions 

The prevalence of wireless threats raises challenging research questions regarding 
the development of scalable techniques for understanding, managing, and protecting 
the RF spectrum. To achieve that goal, it is crucial to understand the spectrum, 
both in real-time and a-posteriori, and detect, classify, and identify spectro-temporal 
information of the communications. In this section, we introduce two research works 
for Deep Learning-based RF identification: In the first work [34], we develop a 
wireless collision detection scheme using the VGG-16 Deep Convolutional Neural 
Network. The second work extends the first by creating a real-time wideband 
spectro-temporal RF identification system based on the YOLO detection network 
and several optimization techniques. 

2.1 Literature Studies on RF Identification 

RF identification have attracted significant attention in the research community 
over the past decades. Researchers have spent some efforts investigating this prob-
lem using various expert features, including higher-order statistical features [12, 
52]. Nonetheless, those approaches require domain knowledge, and redesign of 
algorithms for new generation technologies. Deep Learning, which allows for 
automatic feature extraction and learning, has emerged as a promising solution. 
Deep Learning have recently achieved very good performance across various RF 
identification tasks, such as modulation recognition [38], radar detection [45], 
collision detection [34], or RF fingerprinting of ZigBee [30] and LoRa [14] devices. 
However, there are two key unmet requirements in previous works: real-time and 
wideband spectrum processing. In [2, 46], authors use Deep Neural Networks 
to classify three popular 2.4 GHz technologies: Wi-Fi , Bluetooth, and ZigBee.
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However, these approaches lack the capability to operate in real-time for wideband 
2.4 GHz spectrum, and to localize emissions in the spectrum. Meanwhile, other 
works [40, 53] have only considered identifying emissions in simulation settings. 

A good training dataset is essential for any Deep Learning approach to be 
effective. It is even more important to make the data available to the research 
community to promote the development of new RFML techniques, architectures, 
and models. In [9], the authors published a dataset comprising both simulated and 
recorded over-the-air signals of various modulations for the modulation recognition 
task, where the RF technology information is unavailable. In [46], the authors 
created a dataset of Wi-Fi, Bluetooth, and Zigbee signals transmitted from a signal 
generator instead of commercial RF devices. Nonetheless, these datasets lack data 
of concurrent and colliding communications sampled at much higher rate than the 
standard bandwidth of RF technologies. 

2.2 Visual-Based Spectral Representation 

Our approach to RF Identification utilizes cutting-edge Deep Learning techniques 
in computer vision. However, RF domain is very different to visual domain, as the 
former consider radio signals in the form of complex-valued (or I/Q) samples, while 
the latter works with pixel data. In order to bridge this gap, we have developed a 
technique to transform raw RF samples into visual data. Firstly, we divide the I/Q 
data stream into equal-sized chunks and convert the data of each chunk into the 
frequency domain using the .N -point Fast Fourier Transform (FFT) algorithm. The 
FFT outputs for M chunks are combined to create an .M × N matrix of complex 
samples. Finally, we create a 2D grayscale image representing the 2D view of 
frequency spectrum by mapping each element .mx,y (located in column x and row 
y) to its corresponding integer value .px,y of the pixel at coordinate .(x, y): 

. px,y = f (Ax,y) := γ ∗ (min (max (Ax,y, Amin), Amax) − Amin) (1) 

where .Ax,y = 20 ∗ log10 |mx,y | − N0 is the SNR of emission at frequency bin 
x of the y-th chunk with respect to the noise floor . N0. . Amin = −10, Amax =
50 are respectively the pre-calculated minimum and maximum SNR values in the 
spectrum. .γ = 255/(Amax − Amin) is the scaling factor of the mapping from SNR 
to pixel. 

2.3 Detecting Wireless Collisions 

2.3.1 Learning from Synthetic Data 

To minimize manual efforts for labeling data and quickly train the Deep Learning 
model, we created a synthetic dataset that consists of three distinct classes: No
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Fig. 1 Examples of the generated synthetic data: (a) No transmission (b) Transmission with no 
collision (c) Transmission with collision 

Transmission, Transmission with No Collision, and Transmission With Collision 
with examples in Fig. 1. The generated synthetic data mimics the real communi-
cations observed from DARPA SC2 Colosseum testbed [8]. Our synthetic dataset 
comprises 150,000 samples of size 32x32, which are divided into three subsets: 
96,000 samples for training, 24,000 for validating, and 30,000 for testing. 

Using the synthetic dataset, we trained the VGG-16 Deep Convolutional Neural 
Network [50] with some first layers pre-trained on ImageNet dataset [10] for  
comprehensive visual features. Pre-training the initial layers of the network does 
not compromise the recognition of RF signals, as signals share similar fundamental 
visual features with real-life objects (such as edge features and brightness). We 
opted for VGG-16 due to its exceptional performance in image classification. The 
network was trained using the Adam optimizer [23] implemented in the Keras 
library [5], with the objective of classifying samples into the three aforementioned 
classes. 

2.3.2 Evaluation 

We evaluated the performance of our method with both synthetic and real data. Our 
approach yielded a remarkable accuracy of .99.87% on 30,000 samples from the test 
synthetic dataset, with over .99% for all three classes. Additionally, we conducted 
tests on real data collected from the DARPA SC2 Colosseum testbed [8]. In this 
test, we transformed I/Q samples using 256-point FFT averaging over a 256ms 
time window. Data was then divided into 2-D matrices of size 256x256 representing 
a 20 MHz spectrum. To match the training data, each matrix was further divided 
into an 8x8 grid with each cell having a size of 32x32. The grid cells were manually 
classified into three categories for evaluation purposes. The testbed exhibited an 
extremely congested spectrum, as depicted in Fig. 2, with many RF emissions close 
together, resulting in out-of-band leakages that visually degrade the discrimination 
of collisions and separate emissions. Despite this challenging scenario, our Deep 
Learning model achieved over .94% accuracy in classifying collisions and an overall 
accuracy of .87.5%, demonstrating the effectiveness of the Deep Learning approach 
for identifying RF collisions.
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Fig. 2 The spectrum image (a), input data (b) collected in DARPA SC2’s Colosseum testbed, and 
the classification results (c) 

2.4 Real-Time, Wideband Spectro-Temporal RF Identification 

Inspired by the success of the initial work, we have expanded our approach and 
developed a novel RF identification system called WRIST [36]. The primary 
objectives of the system are threefold: (1) Precise classification and spectro-
temporal localization of RF signals, (2) real-time processing capability, and (3) 
support for the 100MHz-wide 2.4 GHz ISM frequency spectrum. 

2.4.1 Deep Learning Model and Optimizations 

Our Deep Learning approach takes inspiration from YOLO [3], which is one of 
the fastest object detection algorithms in the literature. YOLO is an one-stage 
object detection method that provides end-to-end processing with only a single 
neural network, making it much faster than two-stage object detection methods 
relying on slow and complex pipelines [16, 43]. Moreover, we introduce two Deep 
Learning optimizations to the YOLO algorithm to enhance the speed and accuracy 
RF identifications, described as follows. 

1. RF-centric Anchor Boxes: The YOLO network uses multiple bounding boxes to 
identify emissions in the spectrum image, with each box representing a potential 
emission. More specifically, the network divides the input into a .S × S grid, 
where each cell generates . B bounding boxes that predict emissions with centers 
located within the cell. To capture objects with different aspect ratios, the YOLO 
algorithm uses a set of predefined bounding boxes of specific sizes for each grid 
cell, known as anchor boxes [42], as the references for the predicted objects. 
These anchor boxes need to reflect accurately the objects which the DL model 
learns. However, unlike real-life objects, which the original YOLO model is 
trained on, RF emissions typically have highly variable sizes due to varying 
packet duration and bandwidth. Therefore, to improve the performance of the 
Deep Learning model for RF identification, we replaced the original YOLO
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anchor boxes based on real-life objects with RF-centric anchor boxes generated 
using K-means clustering algorithm on the training dataset of RF emissions, 

2. Optimized Convolutional Layers Stack: The YOLO network can achieve real-
time processing in computer vision [3]. However, utilizing the off-the-shelf 
YOLO network for wideband, real-time RF identification remains a challenge. 
To address this, we devised traanother optimization technique. We selectively 
reduced the volume of convolutional filters with the observation that visualized 
RF emissions are sharper and simpler than real-life objects, which were the initial 
targets for the YOLO design. This implies that fewer useful features are required 
to extract, resulting in a smaller volume of convolutional filters that can still 
accurately identify those emissions. We reduced the filters step-by-step using the 
formula .Ui = Ui−1 × (1 − σ i), where .σ = 0.5 and . Ui is the filter volume at 
the . ith step. We continued the reduction until observing a surge in the validation 
error (after .i = 2 in our experiments). This approach helped to reduce the size 
of the Deep Neural Network by .62.5%, resulting in a more than . 2.2 times faster 
model while maintaining the same level of prediction performance. 

2.4.2 RF-Centric Compression 

While using one-stage object detection can improve the detection speed, it is 
insufficient for the real-time RF identification of wideband spectrum. Specifically, 
the YOLO network is the bottleneck of our system when processing a 100MHz-
wide spectrum: It requires tens of milliseconds to process 100 MHz I/Q samples 
that span only a few milliseconds. Increasing the input size to address this challenge 
would increase the network size and slow down processing further. Our solution is 
the RF-centric compression layer as the first layer of the real-time YOLO model, 
which compresses multiple input images while retaining important features. The 
compression consists of two steps: In the first step, the layer combines .M1 FFT 
outputs into one average chunk of Signal-to-Noise Ratio (SNR) values. In the 
second step, the layer groups . M2 outputs from the first step into chunks and maps 
the chunks to the R-G-B color channels of the final output, using the respective 
average, max, and min operations: 

.

Rx,y = f (10 × log10 Emax
x,y − N0),

Gx,y = f (10 × log10 Emin
x,y − N0),

Bx,y = f (10 × log10 E
avg
x,y − N0),

(2) 

where .f (z) mapping function is defined in Eq. 1. While the compression discards 
some original information, it still preserves essential signal properties in the final 
output. These properties, including the high and low peaks of RF emissions, or 
signal strength variations over time, are particularly useful to distinguish between 
different RF technologies.
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2.4.3 Experimental Results 

We used a comprehensive set of evaluation metrics designed specially for spectro-
temporal RF identification [36]. This includes the Class Detection Accuracy . pd

evaluating how well the Deep Learning model can recognize the presence of 
specific RF classes in the wideband spectrum, as well as the Emission Detection 
Metrics evaluating the detection capability on the fine-grained emission level: 
Precision . pre, Recall . ree, F1-score . F1e, Bandwidth (BW) offset ratio .rΔBW , and 
Time offset ratio . rΔt . By utilizing these metrics, we can thoroughly evaluate the 
performance of WRIST through extensive experimentation in various real-life over-
the-air environments. 

Over-the-Air Dataset We evaluated WRIST using the test portion of the real 
emission dataset as the first evaluation setting. WRIST achieved over .99% of class 
detection accuracy and over .0.99 of emission detection precision for all classes. 
Figure 3 depicts WRIST’s performance with respect to various classes and SNR 
levels. It achieved over .0.99 for precision .pre regardless of categories and SNRs. 
WRIST also obtains a recall . ree of over .0.94 for most cases, except high SNR Wi-Fi, 
where the emissions start to create confusing visual patterns such as RF leakages. 
In all cases, F1-score maintains above .0.96, while BW offset ratio .rΔBW is below 
.0.14 and time offset ratio . rΔt is below .0.12. 

Fig. 3 WRIST performance with respect to different RF classes and SNRs
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Fig. 4 WRIST’s desirable detection performance in congested environments. (a) Inside anechoic 
chamber. (b) In the wild 

Anechoic Chamber For the second evaluation, we conducted experiments in a 
.60 × 60 × 30 ft anechoic chamber at the George J. Kostas Research Institute of 
Northeastern University. To create a realistic crowded spectrum, we operated all RF 
devices simultaneously in different locations inside the chamber. The high collision 
rate and new pattern appearances in the spectrum resulted in a slight decline in 
WRIST’s performance, compared to the previous evaluation. Nonetheless, it still 
maintained very high score of .pre (.0.969) ,  . ree (.0.94) and .F1e (.0.954), with very 
small BW (.0.055) and time (.0.062) offset ratios. Figure 4a illustrates the Wi-Fi, 
Bluetooth, ZigBee, Lightbridge and XPD emissions identified correctly by WRIST 
with the respective green, yellow, red, blue and purple rectangular boxes. 

In-the-Wild Environment In the final evaluation, we collected and annotated RF 
emissions from a densely populated in-the-wild environment with the illustrated 
spectrum in Fig. 4b. We can see that there are even greater volume of RF emissions 
and more complex collision patterns in this case, making the task difficult even for 
human. As a result, WRIST’s performance further degraded compared to previous 
evaluation settings. However, WRIST still maintained remarkable performance with 
high precision (.0.87), recall (.0.83) and F1-score (.0.849). Moreover, both . rΔBW

and .rΔt remained under .0.06, indicating that WRIST can precisely recognize 
the spectro-temporal information of emissions even in the extremely congested 
frequency spectrum. 

2.5 SPREAD Dataset 

The availability of large, labelled datasets of RF emissions is crucial to scientific 
research. It promotes collaboration, provides valuable data to those who lack the 
necessary equipment, and drives the development of new techniques, models, and 
DL architectures for RF research. In the absence of a large, curated dataset for 
spectro-temporal identification of different RF technologies, we are making our
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dataset SPREAD1 available to the research community. SPREAD currently supports 
five RF categories: Wi-Fi, Bluetooth, Zigbee. Lightbridge (Wireless communication 
protocol of DJI drones [11]), and XPD (Samson’s wireless microphone [44]). The 
dataset contains spectrum images, RF samples, and dataset metadata, and we also 
provide the supporting API for the expansion of dataset with more supported 
technologies and devices. 

3 Deep Learning for Canceling Adversarial Interference 

In this section, we consider the application of Deep Learning for mitigating 
interference in adversarial environments. Once the RF emissions that disrupt the 
user’s communication have been identified by the spectro-temporal RF identification 
approach in the previous section, it is essential to eliminate such interference to 
restore the link quality, especially when it originates from an adversary. 

3.1 Motivation 

In contrast to unintentional interference, adversarial interference or jamming 
involves the deliberate use of wireless signals to disrupt target communications. 
Despite significant efforts to combat jammers in the last few decades, jamming 
remains one of the most serious threats to wireless communications today. 
Traditional anti-jamming at the physical layer has relied on spread spectrum 
techniques, which require the coordinating nodes to share a secret key in advance. 
Recent research has attempted to address this limitation for FHSS [26, 51], or 
DSSS [27, 39], or both [22]. Nonetheless, these approaches are primarily designed 
to remove the pre-shared secret for spread spectrum and not to counter powerful 
jammers, which can be a few orders stronger than the sending node. 

In recent years, Deep Learning have been applied to combat jamming, with 
the main purpose of avoiding jammer interference [20, 28]. However, they do not 
consider high-power jammers successfully interfering with the communications. In 
such scenario, it becomes essential to cancel the jamming to preserve the quality 
of the communication. Currently, most existing jamming cancellation techniques 
rely on complicated mechanical jamming-dampening scheme [55], or using pilot 
signals [59, 61], which results in significant communication overhead.

1 Abbreviated from Spectro-temporal RF Emission Analysis Dataset. Dataset is available at 
https://sprite.ccs.neu.edu/datasets/SPREAD/. 
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3.2 System Model and Problem Formulation 

We consider a system composed of two communicating nodes, where the sender 
has a single antenna and the receiver has two identical antennas. They communicate 
using a predetermined channel and link parameters, including frequency, bandwidth, 
and modulation. A single-antenna adversary attempts to disrupt the communication 
by transmitting jamming signals on the same channel. The received signal . Ri of 
antenna i consists of the transmitted signal S, jamming signal J , each adjusted by 
the corresponding channel gains . hSi

and . hJi
, and additive white Gaussian noise . Ni : 

.

R1 = hS1S + hJ1J + N1,

R2 = hS2S + hJ2J + N2.
(3) 

Here, we are considering a slow-fading channel, which implies that the involved 
parties have low mobility. Additionally, we assume that the channel gains remain 
fairly stable throughout the considered bandwidth. The jammer can transmit either 
random samples or modulated packets, with a continuous or intermittent pattern. 

Considering a jammer significantly above the noise, the decodability of signal 
S is dependent on the Signal-to-Interference-and-Noise Ratio (SINR) which is 
approximated as proportional to .

|hS |2
|hJ J |2 . The signal S is undecodable when jamming 

signal becomes stronger, which subsequently reduces . |hS |
|hJ J | . To achieve jamming 

cancellation, we transform Eq. 3, resulting in the following equation: 

.R1 − p1R2 = p2S, (4) 

where .p1 = hJ1
hJ2

, and .p2 = hS1 − p1hS2 . If  . p2 is sufficiently large, we can achieve 

a good SINR to decode S. Equation 4 shows that estimating parameter . p1 correctly 

is the key requirement for this jamming cancellation scheme. To find . p1 = hJ1
hJ2

=
∣
∣hJ1

∣
∣

∣
∣hJ2

∣
∣
ej (φJ1−φJ2), we need to estimate the amplitude ratio .AJ =

∣
∣hJ1

∣
∣

∣
∣hJ2

∣
∣
and the phase 

shift .ΔφJ
: 

.ΔφJ
= φJ1 − φJ2 . (5) 

3.3 JaX Jammer Cancellation Scheme 

3.3.1 Multi-Functional Convolutional Neural Network 

JaX relies on a Convolutional Neural Network (CNN) for detecting emissions and 
estimating phase shifts. We define two goals for designing the CNN:
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Fig. 5 The CNN  structure of  
JaX, where  K is the filter 
size and N is the number of 
filters of convolutional layers. 
M is the number of neurons 
in fully-connected layers 
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• Two phase shift estimations are needed, not only for the jamming signal but also 
for the legitimate signal. This is because with a single estimation, we cannot 
determine which signal is associated with the phase shift. 

• It is required to distinguish between the data-containing signals and noise for 
each phase shift estimation to ensure that the cancellation only operates when 
jamming is present. 

The CNN architecture that performs signal detection and phase estimation is 
illustrated in Fig. 5, which has four outputs: PS1 and PS2 estimate the phase shifts 
for the legitimate and jamming signals. On the other hand, IS1 and IS2 determine 
whether the corresponding phase shift estimations come from a signal or noise, 
where a value of 1 implies real signal, and 0 implies noise. As PS1 and PS2 cannot 
be used interchangeably, we differentiate them by having PS1 learn the smaller 
phase shift, while PS2 learns the larger one. During the training phase, the CNN 
minimize loss function L that comprises the Mean Square Error loss Lφ for phase 
shift estimations and the Binary Cross-Entropy loss LS for signal detections: 

.

Lφ = 1S1(Δφ1 − PS1)
2 + 1S2(Δφ2 − PS2)

2

LS = −((1S1 log(IS1) + 0S1 log(1 − IS1))+
(1S2 log(IS2) + 0S2 log(1 − IS2)))

L = αLφ + (1 − α)LS,

(6)
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Fig. 6 Dataset collection for jamming detection and cancellation 

where Δφi (i ∈ {1, 2}) is the respective ground truth of PSi
. 1Si is 1 if Δφi associates 

with a signal, otherwise 0. 0Si is the complement of 1Si
, and α = 0.1 is the scaling 

factor for the two loss components. 
To achieve sufficiently large dataset to train the CNN, we propose an efficient 

data collection approach, shown in Fig. 6. We first transmitted pre-generated RF 
samples and saved the received samples to files. Then, we calculated the phase shifts 
by cross-correlating the received samples with the transmitted samples. To increase 
the diversity of the dataset, we randomly shifted the phase of RF samples by a 
value within the range [−π, π ] and adjusted the labels accordingly. This process 
was repeated for both the sender and the jammer, and collision data were created by 
combining the RF samples of user signal and jammer signal together. 

3.3.2 Analyzing CNN Output and Canceling Jammer 

At time period T , the receiver collects a block of RF samples that is inputted into 
the CNN model to get the phase estimation . P T

Si
and the associated signal detection 

output . IT
Si
where .i ∈ {1, 2}. Determining the present state of the channel is a crucial 

step, which is accomplished using the signal detection indicator . 1T
Si

based on the 

value of . IT
Si
: 

.1T
Si

=
{

1 IT
Si

> 0.5

0 otherwise
∀i ∈ {1, 2}. (7) 

. 1T
Si

being equal to 1 or 0 indicates that . Si (whose phase shift estimated by . P T
Si
) 

is a real signal or noise, respectively. We then analyze . 1T
Si

and perform jamming 
cancellation according to the following cases: 

• Both .1T
Si

(i ∈ {1, 2}) are . 0: This indicates the current channel is vacant and no 
action will be taken.
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• Only one . 1T
Si
is . 1: This means either the sender of the jammer is transmitting. We 

determine if the transmitter is the jammer by checking whether the RF samples 
are decodable. If a jammer is detected, we record the estimated phase shift. 

• Both . 1T
Si

are . 1: In this case, we detect the presence of a jammer disrupting the 
communication. The jamming phase shift is determined out of the two phase 
estimations by selecting the one that is closer to the jamming phase shift recorded 
in the previous time step. This is done based on the assumption of a slow-
fading channel in our setup, where the phase shift changes slowly over time. 
Additionally, to eliminate estimation variations and outliers, we stabilize the 
estimated jamming phase shift by using the exponential smoothing function with 
smoothing factor . λ: 

.ΔφJ
= ΔT

φJ
λ + Δcur

φJ
(1 − λ). (8) 

The amplitude ratio .AJ =
∣
∣hJ1

∣
∣

∣
∣hJ2

∣
∣
is estimated by analyzing the difference of 

the signal power in the periods before and during the collision [32]. More 
specifically, if the sender transmitted right before the collision with power . ES , 
then jamming power can be calculated from the signal power E at the collision 
by: 

.EJi
= Ei − ESi

, (9) 

with .i ∈ {1, 2}. On the other hand, if the jammer transmitted before the collision, 
the jamming power can be taken directly in that period. Then, amplitude ratio is 

calculated as .AJ =
∣
∣hJ1

∣
∣

∣
∣hJ2

∣
∣

=
√

EJ1
EJ2

. With both phase shift and amplitude ratio 

calculated, the receiver can solve Eq. 4 with .p1 = hJ1
hJ2

= AJ ejΔφJ to cancel the 

jamming signal. 

3.4 Experimental Analysis 

3.4.1 Comparison with Pilot-Based Cancellation 

Existing approaches [59, 61] rely on pilot signals to estimate channel gains for 
canceling jamming signal. However, these approaches have several limitations: (1) 
They lead to significant communication overhead. (2) Their accuracy typically 
decreases in time-varying channels. (3) They require compatibility between the 
transmitter and receiver. JaX was designed to eliminate those limitations. To 
demonstrate the advantages, we compared JaX with a pilot-based approach called 
BJM [61], which leverages pilots to minimize the decoding Mean Square Error for 
optimal reception quality. In our evaluation, we simulated a time-varying Rayleigh 
channel with multipath fading and uncontrolled phase alignment between the
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Fig. 7 Comparison of JaX 
and BJM [61] over Rayleigh 
channel 
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Fig. 8 JaX’s performance in over-the-cables experiments with MOD jammer (1st row) and 
AWGN jammer (2nd row) 

jammer and sender using MATLAB software. The comparison between the two 
approaches is shown in Fig. 7. The results highlight the advantages of JaX over 
pilot-based systems, as JaX achieves comparable performance to BJM using . 50%
transmitted signals for pilots (equivalent to .50% overhead) and outperforms BJM 
with lower pilot utilization. 

3.4.2 Impact of Phase Alignment and Jammer Type 

Multi-antenna jamming cancellation has intrinsic limitations. Removing jamming 
signal J results in signal S being subject to an update gain value . hS1 − p1hS2

where .p1 = hJ1
hJ2

. This gain is small when .
hS1
hS2

≈ hJ1
hJ2

, equivalently . ΔφS
≈ ΔφJ

i.e. the jammer and sender are phase-aligned (.SepΔφ = ∣
∣ΔφS

− ΔφJ

∣
∣ ≈ 0). We 

investigated this impact in Fig. 8 with over-the-cables experiments. We can see from 
the results that: (1) JaX achieves very high jamming resilience against a jammer of 
up to 19 dB stronger than the sender. (2) JaX is effective with both lower-order 
modulation (BPSK) as well as higher order modulation (8-PSK, 16-QAM). (3) 
Jamming cancellation is more effective with MOD jammer transmitting modulated 
signal than AWGN jammer. (4) The performance declines as .SepΔφ decreases.
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Fig. 9 JaX’s performance against different jammers in over-the-air experiments. (a) MOD  
jammer. (b) AWGN jammer. (c) VAR jammer. (d) INT jammer 

This confirms the intrinsic limitation of multi-antenna jamming cancellation as the 
receiver cannot resolve two transmitters that are aligned with each other. 

3.4.3 Over-the-Air Performance 

We evaluated JaX in an indoor over-the-air environment that contains various RF-
blocking and reflecting objects, such as computers, monitors, walls, and desks. We 
used four different jammers: MOD and AWGN jammers (which transmit contin-
uous, constant-power modulated or AWGN signals), VAR jammer that transmits 
power-variable signals, and INT jammer that transmits intermittent signals. The 
evaluation results in Fig. 9 show that JaX is capable of canceling up to 18 dB of 
jamming power, maintaining a Packet Loss Rate (PLR) under . 0.1. 

We see that JaX is also robust under the impact of multi-path in indoor 
environment. This does not contradict the cancellation theory, as we can explain 
as follows. Due to the impact of multi-path, each receiving antenna gathers multiple 
copies of the legitimate and jamming signals: 

.

R1 =
∑

i

hi
S1

S +
∑

i

hi
J1

J + N1,

R2 =
∑

i

hi
S2

S +
∑

i

hi
J2

J + N2,

(10)
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where . hi
Sk

and . hi
Jk

are the respective channel gains of the ith path from the sender 

and the jammer to the antenna k of the receiver. It is evident that with . hSk
= ∑

i hi
Sk

and .hJk
= ∑

i hi
Jk
, Eq. 10 can be considered as equivalent to Eq. 3. Therefore, the 

sum of the channel gains of all the paths from the sender/jammer to the receiver can 
be viewed as a new channel gain of the line-of-sight path between the receiver and 
the sender/jammer at a different location. 

4 Deep Learning for Enhancing RF Receiver with Universal 
Beamforming 

4.1 Motivation 

In this section, we explore an alternative method to improve the robustness of 
wireless communications. Rather than tackling the interference, we enhance the 
quality of user’s received signals by using a multi-antenna beamforming approach. 
Beamforming is a spatial filtering technique that is widely used in systems targeting 
high throughput and spectral efficiency, such as cellular systems since the third 
generation 3GPP 3G, and IEEE 802.11n. Despite extensive research over the 
last few decades [4, 54, 56, 62], beamforming in today’s systems still requires 
explicit channel estimation mechanisms like sounding and feedback in IEEE 802.11, 
Demodulation Reference Signal (DMRS) in 5G, training sequences, etc. These 
mechanisms have several drawbacks, including significant overhead to transmit 
reference signals, long delays associated with accurate channel estimation, and the 
need for compatibility between transmitter and receiver to agree on when, what, and 
how reference signals are transmitted. 

Deep Learning offers a promising solution for beamforming that eliminates 
the need for explicit mechanisms. By analyzing complex patterns in raw I/Q data 
collected at the PHY layer, a deep neural network can quickly and accurately 
estimate channel characteristics. Deep Learning does not require compatibility 
between transmitter and receiver, and enables the development of a universal 
beamforming component that can support different RF technologies. For example, 
a drone equipped with a technology-agnostic relay can enable communications 
between devices without line-of-sight, bringing connectivity to first-responders and 
other ad hoc communications in disaster recovery scenarios. Another application 
is a universal beamforming-relay that extends the range and bridges IoT devices 
operating on the same frequency. Nonetheless, despite of the great potentials, 
previous work on DL-based RX beamforming [25, 60] is restricted in analytical 
and simulation evaluation, and moreover, lacks the goals of universality.
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4.2 Beamforming Theory 

We consider a communication system consisting of a single-antenna transmitter and 
a N -antenna receiver. Assuming that all the receiving branches are synchronized in 
time, the received signal . Rt

i at time t from antenna i comprises the instantaneous 
transmitted signal . St adjusted by the channel gain . ht

i and the additive Gaussian 
noise . Nt

i : 

.Rt
i = ht

iS
t + Nt

i = st
i + Nt

i . (11) 

Using beamforming at the receiver, we combine N receiving branches with the 
adequate complex beamforming weights: 

.Rt∑ =
N

∑

i=1

at
iR

t
i =

N
∑

i=1

(at
i s

t
i + at

iN
t
i ). (12) 

The beamforming weights . ai are chosen to maximize the combining Signal-to-Noise 
Ratio (SNR), which is given by: 

.SNRt∑ = (
∑N

i=1 at
i s

t
i )

2

Nt
0BTs

∑N
i=1 |at

i |2
= (

∑N
i=1 at

i s
t
i )

2

Nt
0

∑N
i=1 |at

i |2
, (13) 

where we assume the noises in different branches are independently and identically 
distributed (i.i.d) with a Power Spectral Density (PSD) . Nt

0 at time t , and pulse 
shaping such that .BTs = 1 (B is the bandwidth and . Ts is the sampling period). 
The Cauchy-Schwartz inequality [17] is used to obtain the solution for maximizing 
.SNR∑, which leads to the optimal weights: 

.ât
i = st

i ∗
∑N

j=1 |st
j |

∀i ∈ 1, ..., N, (14) 

where the denominator is the scaling factor for the weights. Substitute to Eq. 13, we  
have the total SNR: 

.SNRt∑ =
∑N

i=1 |st
i |2

Nt
0

=
N

∑

i=1

SNRt
i . (15) 

If the Signal-to-Noise Ratios (SNRs) of all the branches are identical, this beam-
forming approach can achieve an overall SNR that is N times higher than that of 
a single branch. In fading channels, the combiner can exploit the diversity of the 
receiving branches to attain even more significant gains. The problem is to find the 
optimal weights . ̂at

i . The polar representation of . ̂at
i is:
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Fig. 10 The workflow of DEFORM system 

.ât
i = |st

i |
∑N

j=1 |st
j |

e−jθ t
i ∀i ∈ 1, ..., N. (16) 

Now, we need to estimate the amplitude .At
i = |st

i |
∑N

j=1 |st
j | and the phase . θ t

i . 

4.3 Estimating Beamforming Parameters 

We tackle this problem by proposing the DEFORM system, with workflow depicted 
in Fig. 10. In our system, the received signals from all the branches are multiplied 
by the optimal beamforming weights obtained from the phase and amplitude 
estimations. The resulting signals are then combined to obtain the final output signal 
which is sent to the decoder to extract the data. 

4.3.1 Amplitude Estimation 

Out of N receiving branches, we pick an arbitrary branch k, and transform . At
i for 

every branch i as follows: 

.At
i = |st

i |
∑N

j=1 |st
j |

=
|st

i |
|st

k |
∑N

j=1
|st

j |
|st

k |
. (17) 

Then, instead of finding the exact . At
i using explicit mechanisms, we use an estimated 

amplitude . Ãt
i acquired using the received signals . Rt

i : 

.Ãt
i =

|Rt
i |

|Rt
k |

∑N
j=1

|Rt
j |

|Rt
k |

. (18)
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(a) (b) 

Fig. 11 The discrepancy between . Ai and . Ãi with respect to different SNRs, number of samples, 
and number of receiving antennas. (a) Two antennas. (b) Four antennas 

We see that .Ãt
i ≈ At

i when .|st
i | ≈ |st

k|∀i ∈ 1, ..., N . As  .|st
i | ⪢ |st

k|, the estimation 
error is larger. To minimize this error, we average . Ãi over a number of continuous 
RF samples, instead of using the instantaneous value. The effectiveness of this 
approach is demonstrated in Fig. 11, which shows that averaging . Ãt

i and . At
i over 128 

consecutive samples results in less than . 5% discrepancy even at very low SNR (3 
dB). This error is acceptable, as a high SNR is typically required to meet throughput 
requirements in many practical wireless systems (e.g., over 20dB for Wi-Fi [6]). 

4.3.2 Phase Estimation 

Instead of estimating the absolute signal phase . θ t
i , we estimate the  relative signal 

phase .Δt
θi

= θ t
i −θ t

k between the current branch i and a pre-selected arbitrary branch 
k, achieving the new weights: 

.āt
i = At

ie
−jΔt

θi ∀i ∈ 1, . . . , N. (19) 

Using these weights, the received signal in any branch i will be co-phased with the 
signal from pre-defined branch k and other branches and we can achieve the optimal 
gain at the combiner. 

We design a fast and powerful Convolutional Neural Network [31] to estimate 
the relative phase. Moreover, our network is specially designed to address unique 
characteristics of complex RF samples with the following features: 

Rotational Double-Output In principle, our neural network should provide one 
estimation for each relative phase between two receiving branches. However, while 
investigating various models, we found that the phase estimation experiences abrupt 
variations as the relative phase gets very close to the boundaries of phase values (i.e. 
upper and lower bounds of the respective ranges .[−π, π ] or .[0, 2π ]). To be more 
specific, this behavior can be described as follows:
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• If the phase shift is estimated within .[−π, π ], the output estimation abruptly 
fluctuates when the true value is either in .[−π,−(π − ϵ)] or .[π − ϵ, π ]. 

• If the phase shift is estimated within .[0, 2π ], the output estimation abruptly 
fluctuates when the true value is either in .[0, ϵ] or .[2π − ϵ, 2π ]. 

where we investigated and found that .ϵ ≈ 0.2π . The abrupt fluctuations lead to 
high estimation errors in the aforementioned scenarios. This behavior is related to 
the discontinuity of the phase when it exceeds the boundaries, such as going above . π

and below .−π for .[−π, π ]. Because of the rotational characteristics (i.e., . 2π + θ =
θ mod 2π), the phase will be shifted backward by an angle of . 2π . This creates 
confusion for the estimation model since these values are actually far apart from 
each other (by a distance of . 2π ) on the numerical axis. 

To address this problem, we enhanced the CNN model with a new feature 
called the rotational double-output feature. This feature incorporates two estimation 
outputs . E1, . E2 for the phase values converted in the ranges .[−π, π ] and .[0, 2π ], 
respectively. Notably, these two outputs do not exhibit abrupt variations simultane-
ously. Hence, when one output provides an erroneous estimation, we can choose 
the other output for the current estimation. With this feature, our CNN is trained to 
minimize the Mean Square Errors of both outputs: 

.Lθ = (Δθ1 − E1)
2 + (Δθ2 − E2)

2, (20) 

where .Δθ1 and .Δθ2 are the respective ground truth converted in .[−π, π ] and .[0, 2π ]. 
Addressing Link Bit Error Rate Sensitivity Practical wireless communication 
systems and standards require not only a high precision, but also robust and stable 
estimations over time to maintain the target Bit-Error Rate in the orders of .10−4 for 
desirable throughput and proper communications. To achieve this, we propose two 
different techniques that aim to stabilize the phase estimations: 

1. Temporal Smoothing: As RF channels typically change at a much slower rate 
compared to the incoming rate of RF samples, we can improve the stability 
of an instantaneous estimation by incorporating it with previous values. We 
implemented the exponential smoothing function, which helps to stabilize the 
estimation and enhance the robustness of the beamforming: 

.Et = Ecurλ + Et−1(1 − λ). (21) 

where the phase estimation at time t is calculated using the previous estimation 
at time .t − 1 and the current instantaneous output estimation .Ecur . Parameter 
.λ = 0.2 controls the smoothness of the result. 

2. Multi-Trial Averaging: The temporal smoothing technique necessitates the 
use of multiple RF sample blocks to achieve a stable estimation. When the 
RF samples are limited but more computation power is available (e.g., offline 
processing), we use a multi-trial averaging technique where one block of samples 
is repeatedly used in multiple trials, adjusted by phase randomness to achieve
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diverse results. To address possible drastic changes, we classify estimations of 
N trials into two clusters, based on the distance between the averaged estimation 
from each cluster and the estimation for the current trial. Upon completion of 
N trials, we compare the number of elements in each cluster and choose the 
averaged estimation from the larger cluster for the current period. 

4.4 Evaluation 

4.4.1 Simulation Results 

First, we evaluated the performance of DEFORM in MATLAB simulations [29]. 
Monte-Carlo simulations were performed to assess DEFORM in both static RF 
channel (AWGN channel) and multi-path RF channel (Rayleigh channel), as shown 
in Fig. 12a. The results indicate that, in AWGN channel, DEFORM achieved optimal 
beamforming gain of 3 dB for all modulations, even though it was trained using a 
single modulation (8-PSK). In Rayleigh channel, DEFORM achieved significant 
beamforming gain, up to 5 dB compared to the single-antenna receiver, higher 
than the gain in the AWGN channel. The improved gain is due to the fact that 
in Reyleigh channel, two receiving antennas receive signals with different energy 
levels, providing diversity that DEFORM leverages to improve the beamforming 
gain. 

4.4.2 Experimental Results 

We evaluated DEFORM in two over-the-air experiments: When there is a Line of 
Sight (LOS) and when the LOS is blocked by various types of objects. 

Fig. 12 BER comparison of DEFORM RF receiver and single-antenna receiver in simulation 
settings of AWGN and Rayleigh channel. (a) AWGN channel. (b) Rayleigh channel
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Over-the-Air with LOS To establish the LOS, we set up the transmitter (TX) 
and receiver (RX) devices such that there were no obstructions in the direct path. 
Due to the varying SNRs among the RX branches in over-the-air communications, 
we monitored the SNR of the worst branch and adjusted the RX gain for the 
measurements. The results of BER evaluation are shown in Fig. 13. In most cases, 
DEFORM achieved a 2 dB gain compared to the better receiving branch. In some 
cases, the gain even approached 3 dB, such as with GMSK-6MHz with BER 
.= 10−2. When comparing with the worst branch, the gain can be as high as 4 dB, 
as in GMSK-1MHz. 

Over-the-Air with No LOS For the second experiment, we positioned the multi-
antenna RX at the red cross location in our testbed floorplan (Fig. 14, with the 
presence of numerous large-sized objects, such as computers or lockers). Then, 

BPSK-1MHz GMSK-1MHz 16-QAM-1MHz 

BPSK-6MHz GMSK-6MHz 16-QAM-6MHz 

Fig. 13 BER results with regards to modulations and bandwidths in over-the-air experiment with 
LOS 

Fig. 14 Non-LOS 
over-the-air testbed in a 50 . ×
100 ft. office. The blue 
numbered circles mark the 
TX locations, the red cross 
marks the fixed RX location
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we moved the TX to different locations marked by blue numbered circles. At 
each predefined TX location, the TX transmitted data packets with a randomly 
selected modulation, and the RX also randomly selected the RX bandwidth to 
receive the signal. We analyzed the BER and the results are presented in Fig. 15, 
where DEFORM consistently achieved lower BER than any single branch in all 
measurements. 

4.5 Universal RF Beamforming-Relay 

We demonstrate the universality of DEFORM with the beamforming-relay applica-
tion for LoRa [48] and ZigBee [7], where direct communication link is disconnected 
with Packet Loss Rate (PLR) of .100%. Instead of sending the combined signal to 
the decoder as in the original workflow (Fig. 10), we relayed it to the TX chain. 
In our setup, the relay node was fixed while the TX/RX nodes were mobile within 
a small range around locations exhibiting a LOS to the relay node, as marked in 
Fig. 16a and pictured in Fig. 16b. The same CNN model trained on a basic RF setting 
was used for all experiments. We used Heltec ESP32 Development Kit for LoRa 
communications (using chirp spread spectrum modulation) and XBee-PRO 900HP 
equipped with the XBee Grove Development Boards for ZigBee communications. 

Fig. 15 Bit Error Rate (BER) 
analysis for over-the-air 
experiments in non-LOS 
environment. The indices 
correspond to the numbered 
marks in Fig. 14. NaN  implies  
a zero BER. Cross mark 
implies that no packets are 
detected by the decoder 

BER (log scale) for different TX positions 
1 2 3 4 5 6 7 8 

Branch 1 -0.43 -1.74 -0.76 -0.81 -1.79 -1.34 -1.11 -0.75 
Branch 2 -0.83 -2.17 -1.26 -1.77 -1.28 -1.07 -4.59 × 
DEFORM -1.09 -2.7 -1.72 -2.79 -2.39 -1.84 -5.22 -1.43 

9 10 11 12 13 14 15 
Branch 1 NaN -2.15 -3.63 -0.9 -1.15 -1.76 -3.12 
Branch 2 NaN -5.3 -2.3 -6 -0.5 -1.95 -5.4 
DEFORM NaN -5.7 -3.89 NaN -2.61 -2.12 -5.7 

Fig. 16 Beamforming-relay experiment testbed. TX and RX were mobile within a small range 
from the marked spots. (a) Satellite view map. (b) Viewpoints from TX (left) and RX (right) of 
relay location
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The beamforming-relay approach achieved a PLR of less than .10% in LoRa 
experiments, which is up to 12 and 23 times lower than the conventional Amplify-
and-Forward relay approach using the stronger and weaker antennas, respectively. 
In ZigBee experiments, we achieved a successful packet reception rate as high as 
.193% of the stronger antenna relay and up to .858% of the weaker antenna relay. 

5 Conclusion 

Robust and secure communication is one of the most important requirements 
for wireless and mobiles systems. However, achieving it remains a significant 
challenge. In this chapter, we introduce three novel Deep Learning solutions to 
improve the robustness and security of wireless communications, which include 
(1) RF identification of emissions and collisions, (2) cancellation of adversarial 
interference, and (3) beamforming enhancement of received signal. We substan-
tiate the effectiveness of our approaches throughout extensive evaluation in both 
simulation and real-life settings. Our aim is to lay the foundation for novel Deep 
Learning techniques and foster innovation in achieving robust and secure wireless 
communications. 
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Universal Targeted Adversarial Attacks 
Against mmWave-Based Human Activity 
Recognition 

Yucheng Xie, Xiaonan Guo, Yan Wang, Jerry Cheng, and Yingying Chen 

1 Introduction 

Millimeter Wave (mmWave) technology is one of the promising communication 
technologies due to its high throughput and wide bandwidth. Recent studies have 
shown the initial success of using mmWave in the domain of sensing applications, 
including Human Activity Recognition (HAR). Human activity recognition (HAR) 
has attracted significant attention since it is an essential technology to enable human-
computer interactions in many Internet of Things (IoT) and security applications, 
including health monitoring and user authentication. Many HAR systems have been 
designed using various sensing modalities. Traditional camera-based [11, 16] and 
sensor-based [5, 42] HAR systems capture human activities using video cameras 
and body sensors, respectively. They usually intrigue privacy concerns or are not 
convenient. To circumvent these limitations, low-cost, non-intrusive solutions like 
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radio frequency-based techniques are being researched. Wireless signals have been 
commonly used in communication due to their convenience, flexibility, and ability to 
transmit information over long distances without the need for physical connections. 
The prevalence of wireless signals in our everyday devices allows for a complex 
network of reflected rays in indoor environments. Researchers find that the human 
presence and motion significantly impact these signals, enabling the capture of 
human body movements involved in daily activities. Recently, wireless signals (e.g., 
WiFi [19, 73], sound [31, 62], mmWave [39, 63]) have been utilized to track human 
activities without attaching sensors to the human body. In this direction, mmWave-
based HAR systems stand out because they can provide high resolution with their 
short wavelength and large bandwidths. 

Most mmWave-based HAR systems adopt deep learning models for activity iden-
tification due to their high accuracy and strong capability of handling interference 
in the real world. However, recent research has revealed that deep learning models 
are susceptible to adversarial inputs [68]. Some researchers have designed minor 
perturbations that cause deep learning networks to make inaccurate predictions in 
image classification [44] and voice recognition [53]. Nevertheless, few studies have 
investigated the susceptibility of adversarial targeted attacks in mmWave-based 
HAR systems. Because mmWave-based HAR systems are usually integrated into 
many crucial applications such as older patient monitoring and user authentication 
[6, 91] as shown in Fig. 1, we believe that studying adversarial attacks on these 
systems is critical and urgent. Most recently, Ozbulak et al. [48] have done an 
initial investigation with the untargeted adversarial attack on mmWave-based HAR. 
The designed attack is only applicable to a particular HAR model (i.e., heatmap-
based) and cannot trigger the model to generate designated classes. Moreover, 
many research problems, such as how to design unnoticeable perturbations based on 
unique patterns of mmWave signals [66], how to launch universal target adversarial 
attacks [32], or more challenging black-box attacks [34], are still worth further 

Fig. 1 Illustration of adversarial attacks on gesture-based user authentication system
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exploration. Therefore, a more comprehensive study of systematically exploring 
different types of adversarial attacks on different types of mmWave-based HAR 
models is highly demanded. 

In this chapter, we aim to systematically investigate and reveal the severe security 
issues of mmWave-based HAR models by developing the following effective 
adversarial attacks: (1) White-box Attack. Unlike existing work that only studied 
the untargeted attack for a particular mmWave-base HAR model, we successfully 
design both targeted and untargeted attacks for different mmWave-based HAR 
models in the white-box scenario. Moreover, because both targeted and untargeted 
attacks need to train a unique adversarial perturbation for each activity sample 
[87], which is inefficient and infeasible in time-constrained scenarios, we design a 
universal adversarial attack that can produce an adversarial perturbation applicable 
to different activity samples and ready to be used in real-time without additional 
training; (2) Black-box Attack. Besides white-box attacks that assume the attackers 
have full knowledge of the victim model, we further explore more challenging 
black-box attacks where attackers may not have sufficient information about the 
victim system and need to conduct attacks under more realistic conditions (e.g., the 
victim model is unavailable to the attacker). Black-box attacks are a more probable 
form of threat in real-world applications. By examining black-box attacks, we hope 
to better prepare these HAR systems for actual threats. Therefore, we develop an 
effective method to enable black-box targeted attacks in this chapter. Exploring 
both white-box and black-box adversarial attacks permits us to comprehensively 
and practically evaluate and improve the security of mmWave-based HAR. 

Designing effective and practical adversarial attacks for different mmWave-based 
HAR models is nontrivial. Different from traditional replay attacks [51], our attack 
could fool the HAR system without collecting data samples from the target activity. 
In particular, we apply gradient-based machine learning algorithms to generate 
adversarial perturbations for targeted and untargeted attacks while minimizing their 
size. The adversarial perturbation is generated by solving an optimization problem 
to concurrently minimize the perturbation loss, which constrains the perturbation 
size and adversarial loss to ensure the success of the adversarial attacks without 
being noticed. In addition, mmWave-based HAR systems may use different data 
representations that require careful attention. Our comprehensive study identifies 
two representative types of mmWave-based HAR models (i.e., voxel-based and 
heatmap-based). We design a discretization method to ensure the validity of adver-
sarial samples and further optimize the form of the adversarial samples with two 
distance metrics. The main challenge in designing the universal adversarial attack is 
deriving an effective adversarial perturbation for any activity sample without online 
training. We implement an offline training strategy with an iteration algorithm that 
crafts universal perturbation across the samples from a small pre-collected activity 
set. Unlike the existing universal attack that needs inserting padding frames between 
two successive activities [48], our attack modifies the activity sample directly, 
which enables the attack on a broader range of mmWave-based HAR applications. 
Furthermore, to overcome the information deficiency of the victim model in black-
box attacks, we utilize a knowledge distillation (KD) approach to generate a robust
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replacement model. We further develop a generative adversarial network (GAN) 
to produce a sufficiently large number of pseudo samples for substitute model 
construction. 

In summary, we explore the security issues of AI-enpowered mmWave-based 
HAR systems as deep learning technologies have been extensively used to help 
these systems to achieve more accurate and convenient recognition. In particular, 
we implement a comprehensive assessment of the challenges brought by adver-
sarial attacks on various mmWave-based HAR systems, including both white-box 
and black-box adversarial attacks. For white-box attacks, we employ adversarial 
learning to reduce the magnitude of the perturbation, ensuring that the generated 
perturbation is undetectable by manual examinations while can successfully attack 
mmWave-based HAR systems. We also develop a discretization method to enable 
adversarial attacks on different representative models of mmWave-base HAR. To 
enable universal targeted attacks, we develop an iteration method to construct well-
designed universal perturbations that can be applied to various unseen mmWave 
samples directly without additional training for these samples. We further design 
a black-box attack that can attack mmWave HAR systems without knowing the 
model architecture and parameters. In particular, we leverage knowledge distillation 
to address the information deficiency of the victim model. We also develop a 
generative adversarial network to address the lack of training data. We assess our 
implemented attack methods on two representative mmWave-based HAR models 
and demonstrate the efficacy, efficiency, and practicality of the attacks. 

The remainder of this chapter is organized as follows. Section 2 discusses the 
related work in the field of HAR and adversarial attacks. Section 3 provides back-
ground information on sensing using wireless signals, human activity recognition, 
and adversarial attacks. Section 4 summarizes the victim machine learning models 
for HAR. Section 5 presents the threat model of our attack. Section 6 describes 
the developed white-box adversarial attack design and black-box attack design. 
Section 7 presents the experimental results of the attacks on two different mmWave-
based HAR models. Finally, Sect. 8 concludes this chapter and provides directions 
for future research. 

2 Related Work 

Because of its wide application, HAR has attracted great attention for the past 
decade. In general, human activity recognition systems can be classified into three 
categories: camera-based [28], sensor-based [4], and radio-frequency (RF) signal-
based [19, 71]. A couple of camera-based systems have been implemented to 
recognize human activities [16, 28]. These works use cameras to capture images 
or videos and apply image-processing algorithms to extract motions. However, 
camera-based methods may raise privacy concerns. To address this weakness,



Universal Targeted Adversarial Attacks Against mmWave-Based HAR 181

sensor-based systems have been developed [4, 20]. These works explore various 
dedicated sensors such as gyroscopes [20], ECG or FSR sensors [4] to collect differ-
ent types of signals for further analysis. However, sensor-based approaches require 
users to wear sensors or other devices, which is inconvenient for senior people or 
during complex activities. To overcome the above limitations, researchers recently 
developed RF-based methods (e.g., WiFi and mmWave). WiFi-based approaches 
[19, 72, 75, 89] use off-the-shelf WiFi devices to infer human activities. However, 
being easily influenced by surrounding environments remains the main limitation. 
Compared with WiFi signals, mmWave has been proven to be robust for activity 
recognition due to the antenna’s directionality and stability. Some researchers design 
HAR systems based on mmWave [6, 25, 39, 50, 55, 57, 58, 71, 77–79, 84]. 

Most mmWave-based HAR systems adopt deep learning models for activity 
identification due to their high performance and capability of handling real-life 
interference. However, machine learning models such as neural networks were 
susceptible to adversarial perturbations, as pointed out by Szegedy et al. [68]. We 
discover that the majority of current adversarial attacks are proven in applications 
related to image recognition and speech authentication [10, 14, 32, 43, 44, 81]. 
Recently, there has been some work discussing adversarial attacks on radar-based 
systems. Yang et al. [87] examine the adversarial susceptibility of the Doppler-
based HAR system. They analyze the untargeted attack issues for the HAR 
system and evaluated three white-box attack methods (i.e., FGSM, PGD, and 
MIM), respectively. Then, Ozbulak et al. [48] examine the vulnerability of radar-
based HAR systems to a universal untargeted attack. Nevertheless, none of them 
explore the feasibility of targeted adversarial attacks to control the HAR system’s 
output, nor do they provide a comprehensive study of adversarial attacks against 
mmWave-based HAR systems. Moreover, since Ozbulak’s method only targets one 
heatmap-based HAR model, how to launch a universal targeted attack on other types 
of mmWave-based HAR models is unknown. Besides, based on unique patterns of 
mmWave activity data, how to develop adversarial activity samples to assure their 
validity and make them unnoticeable is necessary but seldom explored. In addition, 
how to enhance attack performance in more challenging black-box scenarios is still 
an open problem. 

In contrast to previous research, we implement a comprehensive study of the 
threats brought by adversarial attacks, including both untargeted and targeted 
attacks. We broaden our study on both heatmap-based and voxel-based mmWave-
based HAR systems. By optimizing perturbation based on the unique patterns of 
mmWave activity data, inventing universal attacks to make our attack approach 
more efficient, and examining the robustness of attacks under black-box scenarios, 
we intend to give a complete examination of the challenges posed by adversarial 
attacks on mmWave-based HAR systems.
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3 Background 

In this section, we present essential background information on three key topics: 
sensing using wireless signals, human activity recognition, and adversarial attacks. 

3.1 Sensing Using Wireless Signals 

Wireless signals have become widely adopted for communication due to their 
convenience, adaptability, and capacity to transmit data over long distances without 
the need for physical connections. The prevalence of wireless signals in our 
everyday electronic devices enables complex networks of reflected rays in indoor 
environments, making it possible to track human motions by examining the received 
signals. The fundamental premise of sensing using wireless signals is that human 
movement affects wireless signal propagation. This breakthrough has led to various 
applications, including human activity recognition [35, 36, 82, 83, 86], human 
localization [37, 59, 75] and vital sign monitoring [23, 33]. Compared with tradi-
tional camera-based methods, which may raise privacy concerns or sensor-based 
approaches that require users to wear sensors or other devices, wireless-signal-
based methods are more convenient, especially for seniors or during complex 
scenarios. Among the prominent approaches are RFID sensing, WiFi sensing, and 
mmWave sensing. These techniques offer distinct advantages in terms of operating 
frequencies, detection capabilities, and potential applications. 

The rise of RFID sensing in smart living spaces is due to its hands-free detection 
abilities with operating frequencies from 125 kHz to 1 GHz. RFID detection con-
siders the changes in waveforms emitted by a transmission antenna. Compared to 
echo-based detection, RFID transponders can handle higher frequencies, allowing 
for more extensive range detection. Unique identification is possible through micro-
Doppler signatures generated when objects interact with RFID signals. RFID 
systems, either active or passive, require no line-of-sight and have long lifespans. 
Thus, they are commonly used in inventory management in warehouses [9, 13, 22, 
23, 47, 56]. 

Owing to the ubiquity of WiFi infrastructure, WiFi detection has become a 
popular device-free sensing technique. Its Received Signal Strength (RSS) can 
provide environmental and bodily state information similar to echo-based detection. 
The RSS, which measures path loss in Decibels (dB), can indicate the presence 
of people and their activities through its sensitivity to environmental changes. By 
placing two WiFi devices across a space and observing signal changes, we can 
effectively track health aspects like breathing and heart rates, and indoor positioning 
[1, 26, 85]. However, the coarse nature of RSS data, coupled with unstable WiFi 
signal strength, raises concerns about its reliability in applications. For a more 
precise use of WiFi signals, Channel State Information (CSI) is developed. CSI 
measures path loss and also incorporates multipath effects like scattering and
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fading. Its higher sensitivity enables better detection of human movements, even 
unconscious ones like breathing [27, 38, 41, 52, 72, 74]. CSI provides a more 
detailed set of values, including amplitude and phase information for orthogonal 
frequency division multiplexing (OFDM) subcarriers, which can capture different 
frequency ranges and thus provide more fine-grained wireless channel details than 
RSS. Hence, healthcare applications are increasingly adopting CSI processing using 
common WiFi devices. 

Millimeter wave (mmWave) detection operates at high frequencies, between tens 
and hundreds of GHz, offering broader bandwidth due to less congestion from com-
mercial technologies such as TV or radio broadcasts. It’s utilized in next-generation 
WiFi protocols likeWiGig or 60GHzWiFi [88]. As mmWave signals can effectively 
penetrate materials like plastic, drywall, and clothing, they are sensitive to minor 
changes like vital signs and are useful for high-resolution monitoring, making 
them ideal for device-free human activity recognition [60]. Studies [30, 63, 76, 90] 
have demonstrated its potential in recognizing various human activities, even with 
sparse data. Commercial radar hardware can be used for human activity recognition, 
dynamic skeleton pose tracking, and even differentiating between a person’s motion 
and static states, including specific activities during static states such as making a 
call, using an app, or keeping the phone in the pocket. 

3.2 Adversarial Attack 

As Deep Learning (DL) becomes more prevalent, it is anticipated that potential 
threats will emerge, particularly against DL models. Adversarial attack, also known 
as evasion attacks, occurs when an adversary makes minute modification to the input 
of a neural network in order to cause an error in the inference process [17, 43]. These 
modifications are not noise samples generated at random; rather, they have been 
purposefully engineered to form a vector in the input feature space that can trick the 
DL model. Typical examples of these kinds of attacks entail either solving a limited 
optimization problem in order to construct a deceptive vector in the input feature 
space or inserting a small value in the model’s gradient direction relative to the 
inputs. Both of these methods involve manipulating the output of the model. These 
attacks are typically stealthier and more energy-efficient than traditional jamming 
attacks [45] as they only need to make a small modification over a short period of 
time to confuse the DL models in their decision-making. 

In the disciplines of Computer Vision (CV) and Natural Language Processing 
(NLP), adversarial attacks have been the subject of much research [10, 14, 32, 43, 
44, 81]. One of the most well-known examples is when a machine learning classifier 
was fooled into thinking that an image of a panda was actually of a gibbon by adding 
a perturbation to the panda image that was deliberately created to trick the classifier 
[17]. Similarly, adversarial attacks in the field of wireless sensing can lead to the 
incorrect classification of human activities. Despite this, we have found that very 
few studies have looked into the possibility of adversarial targeted attacks occurring
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in mmWave-based HAR systems. This motivates us to systematically study and 
uncover the significant security vulnerabilities of mmWave-based HAR models by 
building effective adversarial attacks. 

3.3 Human Activity Recognition 

The field of Human Activity Recognition (HAR) is rapidly growing, benefiting 
from advancements in sensors, cost efficiency, energy optimization, real-time data 
computation, machine learning, computer vision, AI, and IoT technologies. Activity 
classifications span diverse domains such as locomotion [18, 29], transportation 
[12, 46], mobile phone use [15], entertainment [80], health [24, 65], gestures 
[2, 75], and security [54]. HAR’s criticality is emphasized by its application across 
health monitoring, fitness tracking, home automation, augmented reality, traffic 
management, targeted advertising, and security. For instance, individual activity 
logs can inform tailored dietary advice by estimating calorie consumption, and fall 
detection in seniors can trigger immediate emergency response, mitigating severe 
accidents. 

Conventionally, machine learning methods have been employed to recognize 
human activity. However, these conventional methods for HAR necessitate the 
creation and selection of pertinent features, a process requiring significant human 
effort and expert knowledge. Additionally, the performance of these features might 
not always be optimal. To mitigate the need for hand-engineering features, deep 
learning techniques have been introduced in recent years [67]. These techniques 
offer several advantages for HAR. Firstly, they eliminate the need for manually 
designing features, which usually require specialist knowledge. Secondly, they have 
demonstrated higher accuracy in HAR than traditional methods [92]. Thirdly, they 
can learn from unlabeled data, which is a significant advantage for HAR due to the 
impracticality of gathering substantial volumes of labeled activity data. Lastly, deep 
learning techniques can learn useful features from raw data and can handle activity-
related data from a range of sources, including different individuals, device models, 
and device orientations. 

A typical deep learning-based HAR system has four main components as shown 
in Fig. 2. The first component involves data collection from various sensors that 
could capture images, WiFi CSI, accelerations, gyroscope readings, barometer read-
ings, sound, biosensor readings, etc. The second component involves preprocessing 
the collected data using techniques like scaling, Principal Component Analysis 
(PCA) whitening, Zero-phase Component Analysis (ZCA) whitening, or denoising. 
The third component is the model-building stage, where diverse deep models (e.g., 
RBM, autoencoder, RNN) can be utilized to learn relevant features. This is followed 
by the application of a classifier (like softmax classifier, SVM) at the top layer. Once 
the model is established, it can be trained using the input data. During this training 
phase, network parameters such as weights are optimized. Finally, the trained model 
can be employed to predict the activity based on incoming data.
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Fig. 2 A typical flow of human activity recognition system 

4 Victim Machine Learning Models 

The main goal of the mmWave-based human activity recognition system is to 
identify actions or gestures by examining the dynamics of mmWave signals [6, 39, 
57]. As shown in Fig. 2, a typical mmWave-based HAR system captures mmWave 
signals reflected from the human body via the mmWave sensor. It performs signal 
processing to determine activity characteristics (e.g., velocity or posture) of users 
and then estimates the activity class using deep learning models. Deep learning 
model-empowered HAR systems are vulnerable to adversarial attacks. Existing 
mmWave-based HAR systems can be categorized into two classes based on the 
representations of the received mmWave signals. One of the representations is 
the point cloud derived from the received mmWave signals via a series of FFT 
operations (i.e., Range-FFT, Doppler-FFT, and Angle-FFT). Each point in the point 
clouds presents the x, y, and z coordinates of a mmWave signal reflected from the 
human body [6, 63, 78, 84, 91], which allows mmWave radars to generate a rough 
contour of the human body. However, point clouds are incompatible with neural 
network architecture as the number of points varies over time. Prior mmWave-
based HAR research usually adopts voxelization to transform the point cloud 
into a constant amount of voxels [6, 63] for HAR. The other representation is 
the heatmap of the object-related information (e.g., distance, velocity, angle, and 
energy) extracted from the received mmWave signals. Many mmWave-based HAR 
systems have leveraged the heatmap to identify human activities (e.g., doppler-range 
map [39], micro-Doppler map [77], spatial spectrograms [57], spatial feature map 
[61], and projection heatmap [58]) because it is easy to achieve a good accuracy by 
applying pre-trained neural network models from the image domain to mmWave-
base sensing. 

In this chapter, we investigate the attacks on two typical mmWave-based HAR 
models using different types of representations, which brings more challenges to 
design a generic attack method because of their significant differences.
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Fig. 3 Two typical data representations for mmWave-based HAR. (a) Voxels generation from the 
point cloud; (b) Spatial-Temporal heatmaps of three different activities 

Voxel-Based Machine Learning Model We choose an existing mmWave-based 
HAR system [63] as a representative to study the vulnerability of voxel-based 
HAR models to adversarial attacks. This model has been utilized as a benchmark 
in numerous subsequent publications [3, 49]. In particular, the point clouds data 
is subjected to voxelization to address the non-uniformity issue in each frame, 
as shown in Fig. 3a. After the voxelization, the point clouds of each frame is 
transformed into a set of voxels in a three-dimensional space. A voxel is defined as 
.[x, y, z, v], where .x, y, z are the spatial position of the voxel and v is the number of 
cloud points in the cube-shaped voxel with a designated size. Each activity sample 
is defined as t sets of voxels, where t is the time dimension. As for the machine 
learning model, they employ a Time-distributed CNN plus Bi-directional LSTM 
model. This model consists of 3 time-distributed convolutional layers followed by a 
bidirectional LSTM layer and an output layer. This model is directly trained on the 
input sample, which includes its temporal and spatial dimensions. 

Heatmap-Based Machine Learning Model In addition to the voxel-based 
mmWave-based HAR system, we devise a heatmap-based HAR system to study 
its vulnerability to adversarial attacks. Similar to state-of-the-art mmWave-based 
HAR methods (e.g., [39]), we first derive the Doppler-range map of the users’ 
activity by calculating Range-FFT and Doppler-FFT. Then, we generate heatmaps 
by accumulating the velocity of every distance in every denoised Doppler-range 
map together. Next, we normalize the derived velocity information and present the 
velocity-distance relationship in the time dimension. In this way, we transfer the
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original instantaneous velocity-distance relationship to a more comprehensive 
spatial-temporal heatmap, which describes the process of a whole activity as 
shown in Fig. 3b. We utilize a CNN model for activity classification. In particular, 
this model consists of 3 convolutional layers, each followed by a max-pooling 
layer. A 64-dimensional feature map is created after 3 rounds of upsampling and 
downsampling. The feature map is then condensed into a one-dimensional array by 
integrating a flattened layer. 

5 Threat Model 

Adversarial attacks can be categorized into two categories: white-box and black-
box. In order to investigate adversarial attacks against mmWave-based HAR, we first 
adopt the white-box assumption used by most of the previous research [7, 32, 87]. 
After that, we explore a more difficult black-box attack because black-box scenarios 
are more likely to occur in real-world applications. Exploring both white-box and 
black-box adversarial attacks allows us to evaluate and improve the security of 
mmWave-based HAR comprehensively and practically. 

5.1 White-Box Attack 

In the white-box scenario, the attackers have full knowledge of the machine 
learning model’s input, architecture, and parameters. The adversary may also 
continuously access the victim model to produce adversarial samples. In addition, 
the adversary may be familiar with the HAR system’s data preprocessing techniques 
in order to provide the proper perturbation. Based on that, white-box attacks are 
applicable to internal threats: they happen when someone within the organization 
with comprehensive knowledge of the system architecture and access to sensitive 
information acts maliciously. For example, attackers might modify the adversarial 
samples during the data preprocessing stage. The possibility of a white-box attack 
may be increased by a local adversary or information leakage. 

The goal of this adversarial attack is to generate mmWave adversarial samples to 
confuse the mmWave-based HAR system. The mmWave-based HAR system can be 
conceptualized as a function f that receives mmWave signals as input and outputs 
the predicted activity class based on the probability score p for all the enrolled 
activity classes. Specifically, suppose there are n enrolled activities, where . pi ∈
[0, 1] and .

∑n
i=1 pi = 1, the deep learning model f identifies the mmWave input as 

the class with the greatest probability score. In white-box scenarios, we study three 
adversarial attacks and formalize these attacks as follows: 

Untargeted Attack In untargeted attacks, which is usually designed for a specific 
sample (sample-specific untargeted attack), the adversary aims to confuse the HAR
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system by changing the output from the original activity prediction y to a different 
one . y'. Specifically, given a machine learning model f and an activity sample x, 
a sample-specific untargeted attack can be formulated as .f (x + δ) /= y, where x 
is the original activity sample, . δ is the generated perturbation, and y is the original 
predicted activity of the classifier model. In order to achieve this, we should modify 
the activity sample by inserting . δ to decrease the probability score of the original 
activity class . py till it is lower than other activities. 

Targeted Attack In targeted attacks for a specific sample (sample-specific targeted 
attack), the adversary aims to make the HAR systems output the desired class. The 
targeted attack can be formulated as .f (x + δ) = z, where .x + δ is the adversarial 
sample and z is a pre-defined class. To enable this objective, we should modify the 
activity sample to increase the probability score of the desired activity . pz till it is 
higher than other enrolled activities. 

Universal Attack To further improve the efficiency of targeted attacks and make 
it practical in time-constrained contexts, we develop universal attacks by generating 
a well-designed general perturbation. Then, we can insert it to different unseen 
activity samples directly without incurring additional training efforts. In particular, 
the activity data samples gathered at various times or under different conditions 
would often vary. Thus, the perturbation . δ1 designed to attack sample . x1 might 
not work for another sample . x2, such as .f (x2 + δ1) /= z. In addition, generating 
the perturbation for a high-dimensional mmWave activity sample (e.g., voxel-based 
data) is time-consuming, thus it is not always feasible to produce a sample-specific 
perturbation that is tailored for each activity sample. It is important to create some 
universal perturbations . δ, such that .f (xi +δ) = z, where . xi can be different samples 
from the same type of activity. 

5.2 Black-Box Attack 

Black-box is a more challenging scenario. It assumes that the target machine 
learning model is unavailable to the attacker. The adversary only knows the input 
and output of the model [34]. Thus, black-box attacks are usually launched by 
external actors who do not have prior knowledge of the system’s inner workings. 
In black-box scenarios, it is possible for attackers to insert the adversarial sample 
right before the recognition phase, where activity data are sent as input to the 
machine learning model. In this case, the attackers can generate adversarial samples 
in advance and feed them into the machine learning models furtively. In addition, 
attacks can seize the original activity samples during the transmission from a local 
client to the server and then replace normal samples with adversarial ones due 
to the widespread usage of cloud computing and federated learning [40, 64]. We 
investigate our adversarial attacks on HAR in black-box settings, because they are 
more realistic than white-box settings. In black-box scenarios, we would explore 
whether a perturbation generated based on model f could still work on another
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model . f ', where . f ' has different structures and parameters from f . This attack can 
be formulated as .f '(x') = f (x'), where . x' is the adversarial sample generated based 
on model f . 

In order to create a practical adversarial sample that is difficult for humans to 
identify, the distortion caused by the perturbation should be as minimal as possible. 
It can be formulated as .min ‖δ‖p , s.t. f (x + δ) = z. Additionally, it brings 
additional difficulties to produce reliable and undetectable adversarial perturbations 
due to the unique characteristics of mmWave signal representations (e.g., voxel-
based data). Since we should consider both the effectiveness of our attack and 
the distortion of the perturbations, we formally define the objective function as 
.minimizeD(x, x + δ), such that .f (x + δ) = z. D is the distance metrics . ‖δ‖p

that evaluates the magnitude of the generated perturbation. However, as discussed 
in previous work [10], directly solving this non-linear constrained non-convex 
problem is difficult. Thus, we reformulate the objective function as a gradient-based 
optimization instance: 

.minimize L(x + δ) + λ ∗D(x, x + δ), (1) 

where the first component . L represent the adversarial loss which measures the 
possibility of launching adversarial attacks successfully and the second component 
. D represents perturbation loss which constraints the perturbation size. 

6 Attack Design 

In this section, we explore algorithms for adversarial attacks, delineating both white-
box and black-box strategies. Figure 4 graphically demonstrates the progression 
of our white-box methodology. To generate adversarial mmWave activity samples, 
we initially select loss functions based upon varying attack strength requirements, 
such as untargeted attacks or targeted attacks for mmWave-based human activity 
recognition systems. Enhancing the validity and efficacy of the adversarial mmWave 
samples demands the adoption of clipping and discretization processes, paired 

Fig. 4 The flow and components of the designed adversarial mmWave activity sample generation 
in white-box attack
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Fig. 5 The flow and components of the designed adversarial mmWave activity sample generation 
in black-box attack 

with adversarial loss optimizations. We focus not only on minimizing the pertur-
bation magnitude but also on examining the unique characteristics of mmWave 
activity data, thereby defining two distance metrics to foster more unnoticeable 
adversarial samples. Additionally, we contrive a practical and efficient universal 
targeted attack method, shaping a general perturbation during the offline training 
phase. This perturbation readily adapts to runtime mmWave activity samples for 
a targeted attack. Moreover, we delve into black-box attacks, proposing various 
methods to evaluate the feasibility of launching adversarial attacks under different 
circumstances. Figure 5 outlines the implemented black-box attack procedure. To 
facilitate the black-box attack, we first devise a knowledge distillation method for 
the creation of the substitute model. The adversarial mmWave activity sample is 
subsequently generated based on this substitute model. In more challenging cases 
where the available training data for creating this substitute model is inadequate, we 
use a GAN-based method to produce an abundant number of high-quality mmWave 
data, thus compensating for the insufficient mmWave training dataset. 

6.1 White-Box Attack Implementation 

6.1.1 Targeted and Untargeted Attack 

Adversarial Loss We first describe the implementation of our method for specific 
mmWave activity sample. For sample-specific untargeted attacks, we define the 
objective function as .L = max

(
Z(x + δ)s − maxi /=s (Z(x + δ)i) ,−k

)
, where 

.Z(x + δ)s represent the possibility of estimating the activity as the original 
activity class (i.e., the predicted class without attack), and .Z(x + δ)i represent 
the possibility of estimating the activity as another class (i.e., a class that is 
different from the original-predicted activity class). k is a configurable parameter 
that controls attack confidence. For sample-specific targeted attacks, we define . L =
max

(
maxi /=t (Z(x + δ)i) −Z(x + δ)t ,−k

)
, where .Z(x + δ)t is the possibility of 

estimating the activity as the class t we desired. By optimizing the above adversarial 
loss functions, we aim to make our attack method not only confuse the HAR
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systems (untargeted attack), but also force the HAR system to output our desired 
class (targeted attack). In practice, by using different special-designed adversarial 
loss functions, the attacker could either launch an untargeted attack or a targeted 
attack according to different attack strength requirements, which makes our attack 
framework more powerful and dangerous than previous studies [48, 87]. 

Perturbation Loss Generally speaking, the perturbations are the difference 
between the original mmWave sample and the adversarial one. L2 Norm, which 
calculates the Euclidean distance between two sets has been commonly used 
as a metric for adversarial perturbation evaluation [10, 43, 48]. In this project, 
we define the perturbation loss D = ‖δ‖2 2 and generate the perturbation with 
minimal magnitude by optimizing the perturbation loss. In order to ensure the 
effectiveness of the perturbation and improve the efficiency of perturbation 
generation, we set a dynamic threshold τ for each mmWave sample to ensure
‖δ‖2 2 < τ,  s.t. f (x  + δ) = z. The threshold is derived by analyzing the deviation 
between the normal mmWave sample and other normal samples. For a specific 
sample, we calculate the average L2 Norm between the sample and all other 
available samples of the same type of activity, and set it as the threshold τ for 
perturbation generation. 

Parameter Selection The weight λ, which determines the balance between the 
adversarial lossL and perturbation lossD, must be set to a suitable number in order 
to cause gradient descent to minimize both components concurrently, as opposed to 
optimizing over one term at a time. In practice, we do a 12-step binary search to 
identify the appropriate λ and its accompanying adversarial perturbation δ. 

6.1.2 Perturbation Optimization 

Clipping In order to ensure the validity of the adversarial sample, there should be 
a clipping process after each training iteration. The clipping process trims the value 
of the adversarial sample to fall inside a valid range .[α, β], which should be chosen 
based on the data representation of the activity samples in the HAR system. For 
a voxel-based HAR (e.g., [63]), the range should be .[0,∞], as the value of each 
voxel represents the number of points within its limit. For a heatmap-based HAR 
(e.g., [77]), the range is usually set to .[0, 255]. 
Discretization Discretization is a crucial process that is usually neglected in prior 
research [14, 43, 48]. However, due to the specific properties of mmWave data, 
we discover that perturbation discretization is necessary and cannot be disregarded. 
Specifically, the value of each pixel in a valid adversarial heatmap must be a discrete 
integer between 0 and 255, and a valid voxel often has a much lower upper limit 
value (e.g., 5) because of the sparse point clouds. Using the previous method that 
round the value of each adversarial voxel or heatmap to the nearest integer could 
eliminate minor perturbations and render the adversary’s attack ineffective.
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To handle this discrete optimization issue, we incorporate another loss function 
Lmodel(⎿x + δ⏌), where ⎿x + δ⏌ represents the discrete adversarial sample. We 
mark the original L mentioned in Sect. 6.1.1 as Ladv , and reformulate the final 
adversarial loss function asL = Ladv(x+δ)+Lmodel(⎿x + δ⏌). By simultaneously 
optimizing Ladv and Lmodel , we could ensure the validity and efficiency of 
adversarial samples in different kinds of HAR systems. 

Natural Style Optimization Furthermore, we discovered that the majority of 
existing approaches [10, 34, 48, 87] only focus on minimizing the perturbation 
magnitude by using a smaller L2 Norm. However, little attention has been given 
to optimizing adversarial activity samples to have a natural style. In this study, we 
design a method to achieve natural style optimization by minimizing the radius 
of the generated perturbation and reducing the distance between the perturbation 
and the original mmWave sample. Our approach is important for mmWave activity 
samples because if the generated perturbation is too sparse or entirely separated 
from the original mmWave sample, it will be noticeable in heatmaps or voxels. 

To minimize the radius of the generated perturbation, we reduce the pairwise 
Euclidean distance between elements inside the perturbation. We formulate it as 
Dmean(δ) = maxm,n∈δ ‖m − n‖2, where m, n are positions of any two elements 
(e.g., pixels in the heatmap) inside the generated perturbation δ. By reducing the 
average pairwise distance inside the perturbation, the radius of the perturbation 
can be reduced. We further reduce the distance between the perturbation and the 
original activity sample, allowing the perturbation to be concealed within the normal 
samples. In particular, we calculate Chamfer Distance, which seeks the nearest pair-
wise element euclidean distance between the generated perturbation and activity 
sample and takes the mean of all nearby element pair distances. It is expressed 
as Dcf (x, δ) = 1

‖δ‖0
∑

m∈δ minn∈x ‖m − n‖2 2, where x is the activity sample. 
By reducing the Chamfer Distance, the inserted perturbation is pushed nearer the 
activity sample. After integrating the above two functions, we reformulate the final 
perturbation loss function as follows: 

.D = Dmag(x, x + δ) +Dmean(δ) +Dcf (x, δ), (2) 

where Dmag(δ) controls the magnitude of the perturbation as mentioned in 
Sect. 6.1.1. 

6.1.3 Practical Universal Targeted Attack Design 

In this part, we provide details on how to launch efficient targeted attacks against 
HAR through universal perturbation design. Our basic idea is to create universal 
perturbations . δ, such that .f (xi + δ) = z, where . xi can be any activity samples from 
the same type of activity. The designed universal perturbation generation method 
consists of an offline training phase in which a training activity set is utilized to 
produce a universal perturbation, and an online test phase in which the universal
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Algorithm 1: Universal Perturbation Generation 
Input: Training set Ω = {Ω1,Ω2, · · ·Ωi}, HAR model f , targeted activity class z, desired 

perturabtion magnitude τ , desired attack success rate ϵ on training set. 
Output: Universal perturbation δ. 
1: Initialize δ ← 0. 
2: while Success Rate(Ω) < ϵdo 
3: Ωj ← RS(Ω) ⊳ Random Select a Sample 
4: iff (xj + δ) = zthen 
5: Calculate the perturbation that satisfies: δ ≤ τ. 
6: else 
7: Δδj ← argminΔδj D(Δδj ) 

such that f (Ωj + δ + Δδj ) = z. 
8: δ ← (δ + Δδj ). ⊳ Update the Perturbation 
9: endif 
10: end while 

Fig. 6 The overview of our designed universal attack consists of an offline perturbation generation 
phase and an online testing phase 

perturbation is directly applied to runtime activity data for a targeted attack. As 
shown in Fig. 6, we generate universal perturbations . δ for each type of activity, such 
that when the perturbation is applied to the majority of activity data x from the 
same class, the HAR always recognizes it as our desired class z. We generate the 
perturbation for each activity sample in the training set using the same objective 
function (Eq. (1)). To make the adversarial perturbation work for the majority of 
activity examples in the training set, we iteratively adjust the universal perturbation. 

Specifically, the adversarial perturbation is started with zeros and added to an 
mmWave activity sample. If the HAR’s prediction does not match the desired 
activity class, the perturbation will be modified in the direction of gradient descent, 
in which the likelihood of the desired class increases. Otherwise, the current 
perturbation is applied to a fresh training activity sample. If the existing universal 
perturbation does not fit in the new sample, a minimal magnitude perturbation 
revision is calculated and added to the current universal perturbation. The iteration
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Fig. 7 Two representative adversarial samples generated by adding universal perturbations 
directly. (a) Adversarial voxel-based data generation with . L2 Norm of 21; (b) Adversarial heatmap-
based data generation with . L2 Norm of 2083 

process ends when the universal perturbation on the training dataset exceeds a 
predefined success rate (e.g., .70%). Notably, the objective of the technique is not 
to seek the smallest global perturbation that fools the majority of activity samples, 
but rather to select one that is sufficiently tiny. Figure 7 depicts the production of 
adversarial samples by directly applying universal perturbation. We observe that the 
adversarial instances deviate from the original sample only slightly in terms of . L2
Norm. The adversarial samples look natural, which makes them hard to be noticed 
by naked eye. However, adversarial examples enable HAR systems to efficiently 
predict the activity as desired. Compared with traditional sample-specific attacks 
methods, our universal perturbations would significantly shorten the attack launch 
time, which makes it more practical in time-constraint attack scenarios. Different 
from existing universal untargeted attack methods that need to insert padding frames 
between two successive activities [48], our method modifies the activity sample 
directly and thus broadens its applicability to various of mmWave-based HAR 
systems. In addition, our universal attack method is compatible with both untargeted 
and targeted attacks by merely modifying the adversarial loss function.
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6.2 Black-Box Attack Implementation 

Black-box attack is a more challenging scenario where the attacker usually cannot 
access the victim model but only the input and output of the model [48]. Thus, the 
adversarial perturbation cannot be created and updated by exploiting the gradient 
from the victim model. A potential approach to a black-box attack is to train a 
substitute model. Adversarial samples generated by the substitute model can be 
exploited to launch attacks towards the victim model, leveraging the transferability 
of the adversarial sample. 

We begin with a basic black-box setting where the training data of the victim 
model is fully accessible. The key challenge is how to ensure the similarity between 
the target and the substitute model. Directly training the substitute model on the 
dataset usually gets poor performance since the structure of the substitute model 
is different [48]. To solve such a problem, we take advantage of Knowledge 
Distillation (KD) to learn a substitute model that can mimic the prediction of 
the victim model [21]. In black-box scenarios, although the inner structure of the 
victim model is inaccessible, its output class and soft logits indicate the class 
probability distribution for a given input is accessible [34]. Supposing the soft logits 
of the target and the substitute model are . Pt and . Ps , respectively. The predicted 
class of substitute model is Z and the ground truth is G. We formulate the KD 
process as the loss function .L = Ls + Ld , where .Ls = CrossEntropy(Z,G) and 
.Ld = KLDivergence(Pt , Ps). By optimizing the loss function, we transfer the dark 
knowledge from the victim model to the substitute model [21]. 

To ensure the robustness of the black-box attack, we utilize a configurable 
parameter of k to control the confidence of the attack as mentioned in Sect. 6.1.1. 
With a larger k value, the possibility that the adversarial sample being misclassified 
by the victim model will increase. We set .k = 0 in white-box scenarios and set a 
larger k in black-box scenarios. We evaluate the impact of k in Sect. 7.4. 

We then move to a more challenging scenario where the original training data of 
the victim model is only partially accessible. To deal with the problem of insufficient 
training data, we develop a GAN to synthesize sufficient pseudo training samples. 
GAN has been proved to generate high-quality pseudo samples with a limited 
amount of real samples [77]. In this chapter, we implemented a GAN with a 3-
layer generator and a 3-layer discriminator to generate sufficient activity samples 
using only .20% of the original training dataset of the victim model. Specifically, the 
generator seeks to learn the distribution of the real samples so as to have the ability 
of synthesizing pseudo samples. The discriminator tries to discriminate whether a 
sample is a real or pseudo one. The generator and discriminator are trained in turn 
to optimize each other by updating the parameters of their networks. The final state 
is a Nash equilibrium, where the synthesized pseudo samples are similar to the real 
ones, and the discriminator fails to identify whether the activity samples are real or 
not. After obtaining enough high-quality pseudo training samples, we exploit the 
KD method mentioned above to train the substitute model and launch black-box 
attacks toward the victim model.
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7 Performance Evaluation 

7.1 Experimental Setup 

Equipment We have classified mmWave-based HAR systems into two distinct 
categories based on their unique data representations after conducting an exhaustive 
investigation. This approach to classification allowed us to select one representative 
dataset from each category in order to implement our designed adversarial attack 
methodologies. Specifically, we develop our own mmWave-based HAR system [83] 
with heatmap representations in order to examine its susceptibility to adversarial 
attacks. We construct our own HAR system (heatmap-based) using a single 
mmWave device, the TI AWR1642 [8], which incorporates a 2 . × 4 antenna 
array. The frequency range of the device is between .77GHz and .81GHz. The  
sampling rate is fixed at 100 frames per second, with 17 chirps per frame. A 
TI DCA1000EVM [69] data capture card is employed to acquire data from the 
mmWave device and transmit it to a Dell laptop for deep model inference. In 
addition, we select an existing mmWave-based HAR system [63] as a representative 
to investigate the voxel-based HAR model’s susceptibility to adversarial attacks. 
It utilizes TI IWR1443BOOST radar [70] to gather the new point cloud dataset. 
This radar also operates in the frequency range of .77GHz to .81GHz. With four 
receiver and three transmitter antennas, the radar is able to monitor multiple objects 
based on their distance and angle data. This antenna design allows for the estimation 
of both azimuth and elevation angles, enabling the detection of objects in a three-
dimensional plane. 

Data Collection Two datasets are used in our experiment. The public voxel-
based human activity dataset includes 156,355 samples representing 5 distinct 
activities. The radar is mounted on a tripod platform at a height of 1.3m for data 
collection. They have gathered information from two users. Five distinct activities 
are performed by the participants in front of the radar. These include walking, 
jumping, jumping jacks, squatting, and boxing. For a subject performing the same 
activity, data is collected in continuous intervals of approximately 20 seconds. They 
have collected a total of 93minutes of data. The captured point clouds include 
spatial coordinates (x,y,z in meters), velocity (in meters/second), range (distance 
of the point from the radar) in meters, intensity (dB), and bearing angle (degrees). 
The radar’s sampling rate is 30 pixels per second. 

They separated collected data files into train and test files, with the train 
containing 71.6minutes of data and the test containing 21.4minutes of data. To 
surmount the nonuniform number of points in each frame, the point clouds were 
converted into voxels with dimensions of 10 × 32 × 32 (depth=10), making 
the magnitude of the input constant regardless of the number of elements in the 
frame. By evaluating their efficacy, they empirically determined these dimensions. 
The value of each voxel in the voxel representation is the number of data points 
contained within its boundaries. Due to the fact that activities are carried out over a
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Table 1 14 common 
in-home full-body activities 

W1 Crunches W8 Squats 

W2 Elbow plank and reach W9 Burpees 

W3 Leg raise W10 High knees 

W4 Lunges W11 Turning kicks 

W5 Mountain climber W12 Chest squeezes 

W6 Punches W13 Side leg raise 

W7 Push ups W14 Side to side chops 

period of time, the time window from activities is derived to encapsulate temporal 
dependencies. They generate 2-second windows (60 frames) with a 0.33-second 
sliding factor (10 frames). Finally, they receive 12,097 in training samples and 
3538 in testing samples. 20% of the training samples are used for validation. In 
the voxelized representation of the time window, each sample has a 60 × 10 × 32 
× 32. 

For our human activity heatmap-based dataset. We enlist 11 volunteers aged 20 
to 44, ranging in height from 162 to 185 centimeters and weight from 50 to 86 
kilograms. The volunteers are required to complete 14 typical indoor exercises, as 
outlined in Table 1. Four distinct environments (such as the lounge, corridor, small 
classroom, and large classroom) are utilized to capture exercise data. We position 
the mmWave device on a 60cm-high table and record the ground truth recordings 
using a camera. During an 8-month study, we ask each participant to complete at 
least 20 repetitions of each type of exercise (half of the segments are used to train 
the model and the rest segments are used to assess performance). We collect over 
7000 segments from volunteers in total. 

Victim Models Deep learning models are utilized by both the voxel-based and 
heatmap-based HAR systems due to their superior performance compared to 
traditional machine learning models. The authors train a convolution neural network 
(CNN) combined with long short-term memory (LSTM) for the voxel-based victim 
HAR model. CNN layers are applied to every temporal segment of the input data 
by time-distributed CNN. Time-distributed CNN + Bi-directional LSTM classifier 
consists of three time-distributed convolutional modules (convolution layer + 
convolution layer + maxpooling layer) followed by a bi-directional LSTM layer 
and an output layer. The network has 291,000 trainable parameters overall. This 
classifier is trained directly on the input sample’s time and spatial dimensions. They 
use the sklearn GridSearchCV function to optimize the SVM’s hyperparameters (C 
and gamma). Deep learning classifiers were trained using Adam optimizer with a 
learning rate of 0.001. After training for 30 epochs, the models with the lowest loss 
on validation data were preserved. The original classification accuracy of the voxel-
based deep learning model is 90.47%. 

For the heatmap-based victim HAR model, we use a convolution neural network. 
The input of the deep learning model is an array with a size of 224 × 224 × 3. The 
array is generated by quantifying all the pixels in the Spatial-Temporal Heatmap into 
3-D tuples representing RGB value. The feature extractor has three convolutional
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layers, each with a 3 × 3 filter and a ReLU activation function. The convolutional 
layers are used to up-sample the image by extracting high-dimensional features from 
the spatial correlation of pixels. Each convolutional layer is followed by a max-
pooling layer with a stride of 2 and a filter size of 2 × 2 to downsample and reduce 
data redundancy. After the process of 3 rounds of up-sampling and down-sampling, 
a 64-dimension feature map is obtained. Then, a flatten layer is integrated to reduce 
the feature map into a one-dimension array. Given an input data D, the feature 
extractor produces feature representations R = F(D,  Θf ), where F represents the 
feature extractor and Θf represents its trainable parameters. Based on the derived 
feature representation R, a neural network consisting of two dense layers is followed 
to classify the inputs into several classes (e.g., different types of workouts). Given 
the input representation R, the classifier predicts the label as Yc. We optimize the 
classifier by minimizing the cross-entropy loss between the ground truth Ỹc and 

the predicted label Yc as Lc = LCE

(
Yc, Ỹc

)
, where LCE represents the cross-

entropy loss function. The original classification accuracy of the heatmap-based 
deep learning model is 97%. In addition, for the implementation of our adversarial 
attacks in this project, the prototype of our designed attack methods is implemented 
using Python along with TensorFlow. 

Evaluation Metrics We use three metrics to evaluate the performance of our attack 
scheme. (1) Success Rate (SR): it represents the number of succeeded adversarial 
attacks over the total number of attack attempts. In the untargeted attack, we report 
a success when the predicted class is different from the original class while in the 
targeted attack, we only report success if the predicted class matches the desired 
target class; (2) L2 Norm: it indicates the Euclidean distance between the adversarial 
sample and original sample; Smaller L2 Norm values indicate that the adversarial 
sample is similar to the original activity sample, therefore, harder to be noticed by 
human eyes. (3) Confusion Matrix: Each cell in the matrix indicates an original-
target class pair that the actual class in the row is classified as the target class in 
the column. The value of each cell represents the average SR and L2 Norm of the 
corresponding universal attack on the testing set. 

7.2 Evaluation of White-Box Attack 

First, we evaluate the efficacy of sample-specific targeted attack and untargeted 
attack in white-box scenarios for mmWave-based HAR systems. In the white-box 
scenario, the attackers have complete knowledge of the inputs, architecture, and 
parameters of the victim deep learning model. The adversary may also access 
the victim model continuously to generate adversarial samples. In addition, the 
adversary may be familiar with the data preprocessing procedures of the HAR 
system in order to provide the appropriate perturbation. To thoroughly evaluate 
the efficacy of sample-specific attacks, we randomly select 200 and 100 activity
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Fig. 8 (a) Success rate of sample-specific untargeted attacks on voxel-based dataset; (b) Success 
rate of sample-specific targeted attacks on voxel-based dataset (x-axis represents the original 
classes) 

Fig. 9 (a) Success rate of sample-specific untargeted attacks on heatmap-based dataset; (b) 
Success rate of sample-specific targeted attacks on heatmap-based dataset (x-axis represents the 
original classes) 

samples for each activity type from the voxel-based and heatmap-based testing sets, 
respectively. To evaluate the efficacy of universal attacks in white-box scenarios for 
mmWave-based HAR systems, half of the selected samples are used to generate 
universal perturbations (universal attack training set), while the other half are used 
to evaluate the universal attack (universal attack testing set). 

Untargeted Attack In untargeted attacks, the adversary attempts to confound the 
HAR system by modifying the output from the original activity prediction to a 
different prediction. In another word, we report a success untargeted attack when the 
predicted class is different from the original class. Figures 8a and 9a demonstrate 
the attack success rate of our untargeted attacks on the voxel-based HAR dataset 
and heatmap-based dataset, respectively. We can learn that our method achieves 
nearly .100% attack SR for all 5 original classes in the voxel-based dataset and all
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14 original classes in the heatmap-based dataset, indicating that almost all samples 
tested are class-flipped from the original class under our attack scheme. Because the 
goal of untargeted attacks is just to cause the HAR models to make mistakes, these 
high attack success rates demonstrate the effectiveness of our methods. 

Targeted Attack In targeted attacks, the adversary seeks to cause HAR systems to 
predict a particular class. To achieve this objective, we must modify the sample of 
activities so that the probability score of the preferred activity in the victim model is 
greater than that of all other enrolled activities. This work is more difficult because 
we only report a successful targeted attack if the predicted target class matches 
the intended target class. Figures 8b and 9b demonstrate the attack success rate 
of sample-specific targeted attacks on the two datasets, respectively. The x-axis 
indicates the initial classifications. Each sample from the original class is modified 
to be recognized as the other activities, i.e., the other 4 activities in a voxel-based 
dataset or the other 13 activities in a heatmap-based dataset. Our method achieves an 
average SR of .96% on both datasets. Note that attacks towards some target classes 
have relatively lower SR (i.e., jack and walk from the voxel-based dataset; and w4 
(lunges) from the heatmap-based dataset). This is because those classes have more 
different patterns from other activities, making the attack relatively harder. But even 
the lowest SR in targeted attack is still higher than .80%, proving the effectiveness 
of our targeted attack method. 

Universal Attack We design the universal attacks to enhance the efficacy of 
targeted attacks and make them applicable in time-constrained environments. This 
would permit the use of targeted attacks in situations with limited time. By launch-
ing a universal attack, we will be able to directly insert the universal perturbation 
into previously unseen activity samples without incurring any additional training 
expenses. Launching universal attacks is not a simple task due to the fact that 
activity data samples gathered at different times or under different conditions 
frequently differ, meaning that the perturbation designed to attack one sample 
may not be effective against another sample, even if they are from the same 
activity type. Launching universal attacks is necessary. It is not always possible to 
generate a sample-specific perturbation that is tailored to each activity sample due 
to the time-consuming nature of generating the perturbation for a particularly high-
dimensional mmWave activity sample. It is more practicable to generate universal 
perturbations that can be applied to distinct samples from the same type of activity. 
To illustrate the efficacy of our universal attacks, we conduct targeted attacks against 
each activity type and present the results using a confusion matrix. Each cell in 
the matrix represents a pair of original-target classes, where the actual class in 
the row corresponds to the target class in the column. The value of each cell 
represents the SR of the corresponding universal attack on the testing set. The SR 
of universal attacks represents the percentage of activity samples in the testing set 
that are classified as the desired class when subjected to the identical perturbation.
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Fig. 10 (a) Success rate of universal targeted attacks on voxel-based dataset; (b) . L2 Norm of 
generated universal perturbations on voxel-based dataset 

Fig. 11 (a) Success rate of universal targeted attacks on heatmap-based dataset; (b) . L2 Norm of 
generated universal perturbations on heatmap-based dataset 

The performance of our universal attacks over the voxel-based HAR dataset is 
demonstrated in Fig. 10a. We can learn that all universal attacks achieve over . 80%
SR, with the highest SR reaching .98% (.98% of walk samples in the testing set has 
been classified as boxing using the same universal perturbation). We note that the 
SR of some original-target pairs (e.g., jack-squats) is relatively low. This is because 
the samples of the target class vary a lot from the original class, making it harder to 
launch targeted attacks. Despite this, our method still achieves an overall SR of .90%. 
For the heatmap-based dataset, as is shown in Fig. 11a, attacks on most original-
target pairs achieve higher than .90% SR. Few pairs (e.g., w4–w13, w12–w3) have 
relatively low SR due to large differences between original and target samples. But 
our method still reaches an average SR of .94% over 182 original-target pairs on the 
heatmap-based dataset.
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7.3 Impact of Perturbation Magnitude 

There are a number of reasons why it’s important for us to minimize the impact 
of adversarial perturbations and create adversarial activity samples that are highly 
similar to the original samples. First, we aim to subtly alter the activity samples 
so that the perturbations are virtually undetectable while preserving the original 
sample’s inherent properties. This stealthiness is essential in a hostile environment, 
where noticeable changes could signal the presence of an attack. Second, we strive 
to preserve the original classification of an activity from a human standpoint, despite 
causing misclassification in the recognition system. This highlights the disparity 
between human and HAR model perception, highlighting the vulnerabilities of the 
HAR system. Using minimal perturbations, we demonstrate that even minor devi-
ations from the original mmWave data can result in substantial misinterpretations 
by the victim system. Our research aims to make a clear illustration of the HAR 
system’s security issues, spurring the creation of more durable mmWave-based 
HAR systems. 

In this research, we optimize the . L2 Norm in order to minimize the magnitude of 
the perturbation. In order to guarantee the efficacy of the perturbation and increase 
the efficacy of its generation, a dynamic threshold is set for each activity sample. 
For a particular sample, we compute the average . L2 Norm between the sample and 
all other available samples of the same type of activity and use this value as the 
perturbation generation threshold. 

Untargeted Attack To evaluate the impact of perturbation magnitude on our 
white-box attacks, we first evaluate the impact of perturbation magnitude on 
untargeted attacks. Figure 12a demonstrates the . L2 Norm of untargeted attacks on 
the voxel-based dataset. Note that each red line indicates the average value of the 
thresholds of each activity type. We can learn that the median . L2 Norm of untargeted 
adversarial samples on all 5 original classes are below 10 and the maximum . L2
Norm values are all lower than 30, far below the 5 average thresholds, which 
are all around 40–50. For the heatmap-based dataset, as is shown in Fig. 13a, the 
median . L2 Norms between adversarial and original samples are around 2000–2500. 
Adversarial samples towards one workout, w4, have relatively higher . L2 Norm 
distribution due to high-specific features of original heatmaps. But the highest . L2
Norm is still lower than 4000, far below the average threshold of 14,000 for w4. 

Targeted Attack We then evaluate the impact of perturbation magnitude on 
targeted attacks. Figure 12b demonstrates the . L2 Norm of targeted attacks on the 
voxel-based dataset. We find that the median . L2 Norm values of samples towards all 
5 target classes are still around 20. But there is a significant increase in the maximum 
. L2 Norm value on all 5 classes compared with untargeted attacks. This is because in 
targeted attacks, we not only need to flip the class but also need to turn the class to 
the required one. Thus, for some samples a larger perturbation magnitude is needed. 
But even the maximum . L2 Norm values are still below the corresponding average 
threshold (i.e., red lines in the Figure). On the heatmap-based dataset, as is shown in
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Fig. 12 (a) . L2 Norm of perturbations generated in sample-specific untargeted attacks on voxel-
based dataset (The red line represents the average threshold of all attack samples); (b) . L2 Norm 
of perturbations generated in sample-specific targeted attacks on voxel-based dataset (x-axis 
represents the original class) 

Fig. 13 (a) . L2 Norm of perturbations generated in sample-specific untargeted attacks on heatmap-
based dataset; (b) . L2 Norm of perturbations generated in sample-specific targeted attacks on 
heatmap-based dataset 

Fig. 13b, we also notice a larger . L2 Norm distribution compared with the result of 
untargeted attacks. Samples aiming at the target class of w4 have a relatively higher 
maximum . L2 Norm value due to the highly-specific features of the original heatmap 
from this class. But even the maximum perturbation (i.e., 6300) of attack samples 
(i.e., w4) still does not exceed the corresponding average threshold. 

Universal Attack We next evaluate the impact of perturbation magnitude on 
universal attacks. The confusion matrix of universal . L2 Norm on voxel-based 
dataset and heatmap-based dataset are shown in Figs. 10b and 11b, respectively. We 
can learn that the average . L2 Norm for the adversarial samples towards voxel-based 
dataset is between 12 to 29, which is far below the average threshold of 5 classes
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(i.e., around 40–50). The average . L2 Norm of universal samples towards heatmap-
based dataset over 182 original-target pairs is 4000. Though some pairs (e.g., 
w4–w3, w1–w11) have relatively higher perturbation magnitude due to relatively 
large differences in heatmap patterns, these values are still below the average 
threshold of corresponding original classes. 

7.4 Evaluation of Black-Box Attack 

In this research, we delve deeper into black-box attacks for several crucial reasons. 
First, black-box attacks are a more probable form of threat. In real-world applica-
tions, attackers typically do not have access to the HARmodel’s architecture, param-
eters, or training data. By examining black-box attacks, we hope to better prepare 
these HAR systems for actual threats. The successful execution of black-box attacks 
against mmWave-based HAR systems can reveal fundamental vulnerabilities that 
are independent of the system’s design. This enables researchers to comprehend 
the robustness of the HAR system in a more general sense, thereby guiding the 
development of more secure systems. Lastly, investigating black-box attacks can 
provide valuable insights into the design of defensive mechanisms that do not rely 
on modifying the HAR system’s internals, but instead emphasize external measures, 
such as activity sample validation or anomalous activity detection. Exploring black-
box adversarial attacks permits us to comprehensively and practically evaluate and 
improve the security of mmWave-based HAR. 

All black-box experiments are taken on the heatmap-based dataset due to the 
page limit. We begin with the basic settings where the victimmodels are inaccessible 
but we assume that the attacker has full access to the training data set. We use 
KD to train a substitute model to generate adversarial samples and launch attack 
towards the victim model. Our substitute model is a 2-layer CNN network with 
.3.2M trainable parameters. We also trained the substitute model directly on the 
training set without KD for comparison. As mentioned in Sect. 6.2, we exploit a 
confidence value of k to ensure the robustness of our attack method. We change the 
k value from 0 to 40 with a step size of 5 to study the impact of k. Figures 14a, b 
and 15a demonstrate the average SR and . L2 Norm under basic black-box settings 
for untargeted, targeted, and universal attacks, respectively. We can learn that the 
substitute model trained with KD outperforms the directly-trained model for all k 
larger than 0 in all types of attacks. When .k = 40, the substitute model can achieve 
over .80% SR for untargeted and targeted attack as well as an SR of .75% for universal 
attack. We can also notice a trade-off between SR, . L2 Norm and k values. As k 
increases, we can obtain a higher SR but the . L2 Norm also increases accordingly, 
meaning the adversarial samples have more significant perturbations. However, our 
method still maintains the . L2 Norm value of less than 6500 for all three types of 
attacks even when .k = 40.
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(a) (b) 

Fig. 14 (a) Success rate and . L2 Norm of untargeted black-box attack; (b) Success rate and . L2
Norm of targeted black-box attack 

Fig. 15 (a) Success rate and . L2 Norm of universal black-box attack; (b) Success rate of GAN-
KD-based black-box attack 

We next move to a more challenge setting where the adversary can only access 
part of the training data used by the victim model. To overcome the training data 
deficiency issues, we exploit the GAN method mentioned in Sect. 6.2 to generate 
a pseudo training set with a size similar to that of the original training set using 
only .20% of original training data. The substitute model is trained using KD and 
the generated training set. We set confidence value .k = 40 since previous results 
have proven that this confidence value can obtain relatively robust performance. For 
comparison, we trained a baseline model without KD and GAN using only . 20%
of the original training data, similar to the black-box model used in [48]. As is 
shown in Fig. 15b, the GAN-KD trained substitute model outperforms the baseline 
model for all 3 types of attacks, with the highest SR of .76.5% for the untargeted 
attack. Due to higher requirements for the adversarial samples, SR of targeted and 
universal attacks using the GAN-KD method are relatively low (i.e., 56 and .42%), 
but the SR still outperforms the baseline model with an increase of .23.4 and .20.22%, 
respectively.
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8 Conclusion 

Artificial intelligence (AI) has arisen as a swiftly advancing subfield of computer 
science with the goal of emulating and augmenting human intelligence. This 
expansion has been fueled by ultra-high-performance computing technology and 
the introduction of deep learning, resulting in a significant evolution of traditional 
AI technology. In recent years, deep learning has marked a substantial surge forward 
in the development of artificial intelligence in areas such as computer vision, speech 
recognition, and text comprehension. It is capable of detecting concealed non-
linear correlations in data, supporting new file types, and identifying unidentified 
threats, which significantly improves cybersecurity defense. However, even the most 
sophisticated AI technologies, such as deep learning, are susceptible to adversarial 
attacks that can result in incorrect classification or prediction outcomes. 

Due to their convenience, adaptability, and capacity to transmit data over 
long distances without the need for physical connections, wireless signals have 
become widely adopted for communication. The prevalence of wireless signals 
in our everyday electronic devices enables complex networks of reflected rays in 
indoor environments. Advances in wireless technologies and sensing methodologies 
have facilitated the use of wireless signals, such as millimeter wave signals, for 
wireless sensing tasks. The fundamental premise of these applications is that human 
movement affects wireless signal propagation, making it possible to track human 
motions by examining the received signals. This breakthrough has led to various 
applications, including human activity recognition, human localization, and vital 
sign monitoring. 

Among these, Human Activity Recognition (HAR) has gained considerable 
recognition as a key technology in numerous Internet of Things (IoT) and security 
applications, such as health monitoring and user authentication. However, the 
widespread deployment of HAR systems has uncovered vulnerabilities in security, 
specifically their susceptibility to adversarial attacks. Since the majority of HAR 
systems employ deep learning models for activity identification due to their high 
accuracy and ability to handle interference in the real world, a gap exists in research 
exploring the vulnerability of HAR systems to adversarial attacks. In domains 
such as healthcare, security, and smart home applications, false human activity 
detection can have significant repercussions. Given the extensive integration of 
HAR systems in these critical applications, a thorough investigation into the variety 
of adversarial attacks that target HAR models is crucial. This chapter focuses on 
adversarial attacks on AI-empowered HAR, aiming to increase awareness about 
their susceptibility and shed light on the security challenges they present. 

In this chapter, we take a pioneering approach toward adversarial attacks on 
mmWave-based HAR systems, going beyond the prevalent research focus on 
untargeted attacks. Our unique contribution lies in the design and investigation 
of practical and universal perturbations to enable targeted adversarial attacks. To 
ensure wide applicability, these perturbations are generated through an iterative 
algorithm. Additionally, we affirm the validity of mmWave-based adversarial
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samples and shape them into a more natural style. In order to address the information 
deficiency and scarcity of training data in black-box scenarios, we also incorporate 
techniques such as knowledge distillation and generative adversarial networks. 
Through our thorough investigation, we have classified mmWave-based HAR 
systems into two distinct categories based on their specific data representation. 
This classification approach enabled us to select representative datasets from 
each category for applying our designed adversarial attack methodologies. We 
are confident in this research approach as we believe these methodologies can 
be extended to a broader range of datasets that share similar data representation 
characteristics. 

Physical adversarial attacks on mmWave-based HAR systems remain a relatively 
unexplored area of research, and thus, future investigation into physical adversarial 
attacks will significantly contribute to the understanding of the overall security 
dynamics of these systems. This understanding will undoubtedly be invaluable in 
developing more resilient defensive strategies. 

References 

1. Abdelnasser H, Harras KA, Youssef M (2015) Ubibreathe: a ubiquitous non-invasive wifi-
based breathing estimator. In: Proceedings of the 16th ACM international symposium on 
mobile Ad Hoc networking and computing 

2. Abdelnasser H, Youssef M, Harras KA (2015) Wigest: a ubiquitous wifi-based gesture 
recognition system. In: 2015 IEEE conference on computer communications (INFOCOM), 
pp 1472–1480 

3. Ahuja K, Jiang Y, Goel M, Harrison C (2021) Vid2doppler: synthesizing doppler radar data 
from videos for training privacy-preserving activity recognition. In: Proceedings of the 2021 
CHI conference on human factors in computing systems, pp 1–10 

4. Akpa EAH, Fujiwara M, Arakawa Y, Suwa H, Yasumoto K (2018) Gift: glove for indoor 
fitness tracking system. In 2018 IEEE international conference on pervasive computing and 
communications workshops (PerCom workshops) 

5. Akpa EAH, Fujiwara M, Arakawa Y, Suwa H, Yasumoto K (2018) Gift: glove for indoor 
fitness tracking system. In: 2018 IEEE international conference on pervasive computing and 
communications workshops (PerCom workshops), pp 52–57 

6. Alam MAU, Rahman MM, Widberg JQ (2021) Palmar: towards adaptive multi-inhabitant 
activity recognition in point-cloud technology. In IEEE INFOCOM 2021-IEEE conference on 
computer communications, pp 1–10 

7. Ambalkar H, Wang X, Mao S (2021) Adversarial human activity recognition using wi-fi csi. 
In: 2021 IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1–5 

8. Awr1642 data sheet, product information and support | ti.com. https://www.ti.com/product/ 
AWR1642. Accessed 12 Jun 2023 

9. Bo H, Xu L, Hao L, Dou Y, Zhao L, Yu W (2016) A single-channel non-orthogonal i/q rf 
sensor for non-contact monitoring of vital signs. Appl Comput Electromagn Soc J 31(6) 

10. Carlini N, Wagner D (2017) Towards evaluating the robustness of neural networks. In: 2017 
IEEE symposium on security and privacy (sp), pp 39–57 

11. Çeliktutan O, Akgul CB, Wolf C, Sankur B (2013) Graph-based analysis of physical exercise 
actions. In: Proceedings of the 1st ACM international workshop on Multimedia indexing and 
information retrieval for healthcare, pp 23–32

https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642
https://www.ti.com/product/AWR1642


208 Y. Xie et al.

12. Chu D, Lane ND, Lai TT-T, Pang C, Meng X, Guo Q, Li F, Zhao F (2011) Balancing energy, 
latency and accuracy for mobile sensor data classification. In: Proceedings of the 9th ACM 
conference on embedded networked sensor systems, pp 54–67 

13. Ding H, Han J, Shangguan L, Xi W, Jiang Z, Yang Z, Zhou Z, Yang P, Zhao J (2017) A platform 
for free-weight exercise monitoring with passive tags. IEEE Trans Mob Comput 16(12):3279– 
3293 

14. Duan R, Ma X, Wang Y, Bailey J, Qin AK , Yang Y (2020) Adversarial camouflage: hiding 
physical-world attacks with natural styles. In: Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, pp 1000–1008 

15. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Pers Ubiquitous 
Comput 10:255–268 

16. Ghorbel E, Boutteau R, Boonaert J, Savatier X, Lecoeuche S (2018) Kinematic spline curves: 
a temporal invariant descriptor for fast action recognition. Image Vision Comput 77:60–71 

17. Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples. 
Preprint, arXiv:1412.6572 

18. Gu F, Chung M-H, Chignell M, Valaee S, Zhou B, Liu X (2021) A survey on deep learning for 
human activity recognition. ACM Comput Surv 54(8):1–34 

19. Guo X, Liu J, Shi C, Liu H, Chen Y, Chuah MC (2018) Device-free personalized fitness 
assistant using wifi. Proc ACM Interact Mob Wearable Ubiquitous Technol 2(4):1–23 

20. HassanaMM, Uddin Z, Mohamed A, Almogrena A (2018) A robust human activity recognition 
system using smartphone sensors and deep learning. Future Gener Comput Syst 81:307–313 

21. Hinton G, Vinyals O, Dean J, et al (2015) Distilling the knowledge in a neural network. 2(7). 
Preprint, arXiv:1503.02531 

22. Hui X, Kan EC (2018) Monitoring vital signs over multiplexed radio by near-field coherent 
sensing. Nat Electron 1(1):74–78 

23. Hussain Z, Sagar S, Zhang WE, Sheng QZ (2019) A cost-effective and non-invasive system 
for sleep and vital signs monitoring using passive rfid tags. In: Proceedings of the 16th EAI 
International Conference on Mobile and Ubiquitous Systems: Computing, Networking and 
Services, pp 153–161 

24. Iso T, Yamazaki K (2006) Gait analyzer based on a cell phone with a single three-axis 
accelerometer. In: Proceedings of the 8th conference on Human-computer interaction with 
mobile devices and services, pp 141–144 

25. Jin F, Sengupta A, Cao S (2020) mmfall: fall detection using 4-d mmwave radar and a hybrid 
variational rnn autoencoder. IEEE Trans Autom Sci Eng 19(2):1245–1257 
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Adversarial Machine Learning for
Wireless Localization

Tianya Zhao, Xuyu Wang, Shiwen Mao, Slobodan Vucetic, and Jie Wu

1 Introduction

Location-based services gain extensive popularity in current and future lives, such
as autonomous driving [14], epidemic tracking [31], indoor navigation [78], and
smart cities [62]. Global Positioning System (GPS) is widely used in outdoor
navigation and powers many public maps, such as Google Maps [24] and Bing
Maps [10]. However, the effectiveness of GPS is greatly hindered when it comes
to indoor environments, primarily due to its vulnerability to occlusion. As wireless
communication technologies develop rapidly, wireless signals such as Wi-Fi, LoRa,
LTE, and 5G have become ubiquitous in our daily lives and work environments.
These wireless technologies enable accurate indoor and outdoor localization,
compensating for the limitations of GPS performance in indoor settings.

Due to the rapid advancements in machine learning technologies, extensive
research has been conducted on fingerprint-based positioning systems. Table 1 sum-
marizes some papers on machine learning-based wireless localization. Compared
to measuring time of arrival (TOA), time difference of arrival (TDOA), or angle
of arrival (AOA), fingerprint-based localization systems demonstrate the advantage
of requiring special devices. The process of fingerprint-based positioning typically
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Table 1 Technologies used in recent wireless localization solutions

Wi-Fi LTE/5G Bluetooth Others

[64–67], [42, 52, 81, 83], [20, 32, 56, 77] [36, 46, 74, 84]

[1, 53, 68, 76], [35, 44, 48, 69], [30, 33, 55, 58] [5, 37, 50, 51]

[9, 15, 26, 38], [18, 54, 63, 80], [28, 40] [34, 73]

[8, 79] [16, 49, 57]

involves two stages: the offline stage and the online stage. For the offline stage,
a large database is constructed from a comprehensive measurement of the field,
and the machine learning models are trained on the database. Once the models are
trained, they can be used to predict locations by comparing the received test data
with the information stored in the database.

Received signal strength (RSS) is widely employed as fingerprints because of its
simplicity. Radar is one of the pioneering fingerprint-based positioning systems,
which deploys K-nearest neighbors (KNN) to estimate locations based on the
RSS dataset [6]. Besides, support vector machine (SVM) has been employed in
an RSS-based location determination system [72]. In addition to the aforemen-
tioned shallowing machine learning algorithms, deep neural networks (DNNs) have
been employed to boost the efficiency of fingerprint-based positioning systems.
Multilayer perceptron (MLP) and convolutional neural networks (CNNs) have
been deployed to aid in accurate position estimation within indoor localization
systems [22, 61, 79].

While RSS is simple to use, it does have certain drawbacks. One significant
limitation is its inability to reflect the multipath effect. This means that even
slight changes in multipath components can result in substantial variations in RSS.
Furthermore, RSS only provides coarse channel information as it represents the
sum of powers from all received signals. Consequently, the precision of RSS-based
localization is diminished due to these inherent limitations.

Channel state information (CSI) provides fine-grained channel information and
is widely used in deep learning-based localization systems. DeepFi first deploys
DNNs with a substantial amount of CSI data for indoor localization [64, 67]. In
addition to using the amplitude information of CSI, PhaseFi leverages calibrated
phase data to train DNNs in two distinct indoor environments [65, 66]. Moreover,
BiLoc deploys a bi-modal design by utilizing AOAs and CSI average amplitudes as
inputs [68]. DyLoc transforms CSI into angle delay profiles (ADPs) and employs
recurrent neural networks (RNNs) to estimate precise locations [29].

Undoubtedly, leveraging powerful DNNs in fingerprint-based localization sys-
tems can yield impressive performance. However, it is significant to address critical
concerns regarding the security and robustness of such systems. The inherent
black-box nature of DNNs and the potential utilization of third-party resources
during the training process can introduce vulnerabilities. In fact, research focusing
on adversarial machine learning has been ongoing for a long time. In domains
such as computer vision and natural language processing, numerous studies have
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demonstrated that attacks can fool machine learning models, including linear
classifiers [17] and DNNs [23].

In contrast to the extensive studies conducted on adversarial machine learning in
the aforementioned domains, research in wireless domains is currently in an early
stage but holds equal significance. For instance, Bahramali et al. design adversarial
perturbations that are resilient against removal in DNN-based wireless communi-
cation systems [7]. Furthermore, their work demonstrates that these perturbations
can significantly degrade system performance, even in the presence of defense
mechanisms. WiCAM generated adversarial examples with limited perturbations
that do not affect Wi-Fi communications [75]. However, these carefully crafted
examples can significantly disrupt DNN-based WiFi sensing applications, such as
human activity recognition [4], fall detection, and gesture recognition.

The above studies highlight the importance of addressing vulnerabilities of
machine learning-based wireless applications against potential adversaries. In
this chapter, we introduce adversarial machine learning for wireless localization.
Section 2 first presents various localization systems that rely on different wireless
technologies and are designed for diverse application scenarios. Section 3 discusses
different attacks in machine learning-based wireless positioning systems. Section 4
concludes the chapter by presenting our view on adversarial machine learning for
wireless localization and discussing future work.

2 Machine Learning-Based Localization

In the artificial intelligence (AI) era, machine learning has been widely deployed in
various disciplines such as natural language processing, computer vision, robotics,
and engineering. Compared to classic machine learning methods, deep learning
is a branch of machine learning, which is more powerful but hard to explain. In
this section, we will introduce several machine learning-based localization systems
using different wireless technologies.

Figure 1 gives a general architecture of the fingerprinting-based localization
system. Regardless of the type of wireless signal utilized, a sequence of processing
procedures yields data specific to various locations. During the offline phase, we
employ this location-specific data to train our deep learning model. Subsequently,
in the online phase, new test data is processed and fed into the well-trained model
to output the predicted locations.

2.1 Wi-Fi-Based Localization

Wi-Fi is commonly used in homes, offices, public areas, and various other envi-
ronments to provide wireless internet access and enable wireless communication
between devices such as computers, smartphones, tablets, and smart home devices.
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Fig. 1 An overview of the architecture of a fingerprinting-based localization system

As it is ubiquitous, Wi-Fi-based localization is popular among other wireless
technologies. In this section, we discuss Wi-Fi-based positioning systems using
RSSI and CSI as fingerprints.

2.1.1 RSS-Based

RSS measures the power level of a signal received by a wireless device, such
as a Wi-Fi receiver or a mobile phone. RSS typically represents the intensity or
magnitude of the signal as it arrives at the receiver. In the context of localization
using Wi-Fi fingerprinting, RSS values are collected from different reference points
to create a fingerprint database. These RSS values provide information about the
signal strength at specific locations, which can be used to estimate the position of a
device in the environment.

UJIIndoorLoc [60] is a publicly accessible Wi-Fi fingerprint-based indoor
localization database. As shown in Fig. 2, it covers three distinct buildings, each
consisting of four or five floors. To create the data, 25 different mobile models are
used to take measurements from 933 different reference points by more than 20
users. This comprehensive dataset consists of 21,049 samples, with each sample
containing 520 RSS values. Due to its inclusion of essential information such
as building, floor, and position data, the UJIIndoorLoc dataset can be used for
classification tasks and indoor localization.

In [13], several machine learning algorithms are discussed for classification tasks
on the UJIIndoorLoc dataset. Although they successfully achieve high performance
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Fig. 2 UJIIndoorLoc data distribution

in building classification, floor classification, and region classification, they fail
to predict accurate positions. To prove the effectiveness of machine learning for
localization, we simply employ SVM and MLP for position prediction. For the
localization problem, we usually take root mean square error (RMSE) as the
evaluation metric. RMSE is a practical choice since it corresponds to the Euclidean
distance in distance calculations.

In the case of SVM, the RMSE value remains below 10, while for MLP, the
average RMSE value stays below 2. It is important to note that these results represent
baseline performance, and there is potential for further improvement by employing
additional training tricks or exploring different models. Nevertheless, these initial
findings suggest that achieving good precision in complex indoor localization tasks
is feasible.

2.1.2 CSI-Based

CSI consists of subcarrier-level measurements of orthogonal frequency division
multiplexing (OFDM) channels. Especially now the collection of CSI can be carried
out on commodity Wi-Fi network interface cards (NIC), such as Intel Wi-Fi Link
5300 NIC [27]. Therefore, numerous fingerprinting systems based on CSI have been
proposed and demonstrated to achieve remarkable precision. In our previous work,
DeepFi employed a DNN to effectively learn extensive CSI data obtained from three
antennas and 30 subcarriers [64, 67].
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The channel model in the frequency domain can be expressed as

.
−→
Y = CSI · −→

X + −→
N , (1)

where .
−→
X and .

−→
Y refer to the transmitted and received signal vectors, and .

−→
N

represents the additive white Gaussian noise. CSI denotes the channel’s frequency
response. The channel frequency response .CSIi of subcarrier i is a complex value,
defined as

.CSIi = ℐ𝒾 + j𝒬𝒾 = |CSIi | exp(j / CSIi), (2)

where .ℐ𝒾 and .𝒬𝒾 denote the in-phase and quadrature components, respectively.
.|CSIi | and ./ CSIi denote the amplitude response and phase response of subcarrier
i, respectively.

DeepFi [64, 67] only employs the amplitude responses for fingerprinting,
primarily due to the presence of hardware imperfections that result in measured
phase errors. These errors are mainly caused by two factors. First, the presence
of carrier frequency offset (CFO) caused by the down-converter in the receiver
signal, as perfect synchronization of the central frequencies between the receiver and
transmitter is unattainable. Second, sampling frequency offset (SFO) is introduced
by the ADC due to unsynchronized clocks. Additionally, in the case of SFO, the
measured phase errors vary across different subcarriers. Therefore, the raw phase
information has limited use in localization.

Despite the aforementioned limitations of raw phase information, PhaseFi [65,
66] implements a linear transformation to alleviate the impact of random phase
offsets. When compared to amplitude, the phase of a signal with periodic changes
over the propagation distance demonstrates greater robustness when encountering
obstacles. Furthermore, the calibrated phase information tends to be more stable for
a given position.

In addition to using the CSI amplitude and the processed phase independently,
BiLoc [68] takes advantage of estimated AOAs and average amplitudes for deep
learning-based indoor localization. In general, localization systems based on CSI
can achieve greater precision because CSI represents accurate channel information
and allows for elaborate processing.

2.2 5G-Based Localization

In addition to Wi-Fi, 5G has emerged as a widely adopted technology. One of the
key techniques within 5G is Millimeter Wave (mmWave) communications, which
not only offers high data rates but also has remarkable temporal resolution and
directivity.
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In [70], we propose a deep convolutional Gaussian process (DCGP) based
regression approach for mmWave outdoor localization. Unlike CNN, DCGP is a
fully Bayesian kernel method without any neural network component, which can
provide uncertainty estimation on location predictions [11]. Additionally, DCGP
incorporates the convolutional structure within the deep Gaussian process, allowing
it to effectively identify hierarchical combinations of local features in the mmWave
dataset. This capability proves particularly valuable in non-line-of-sight (NLOS)
environments.

In this case, we employ an open-source mmWave dataset generated using ray-
tracing software within the New York University area, covering a spatial extent of
400m .× 400m [21]. This dataset comprises beamforming images from a total of
160,801 two-dimensional positions. For offline training, our system undergoes 550
epochs of training to obtain a highly accurate model. In the online prediction phase,
our system achieves impressive results, yielding a mean distance error of .2.79m for
outdoor localization.

2.3 Voice-Based Localization

In the context of smart homes, devices are often commanded verbally to execute
desired operations. Enhancing smart speakers’ performance and enabling numerous
new IoT applications, voice localization with microphone arrays is the focus of our
exploration, particularly in terms of a voice fingerprinting-based indoor localization
system using an off-the-shelf microphone array.

In [46], we employ the short-time Fourier transform (STFT) on audio data,
converting it into spectrogram images that serve as inputs for the DNNs. During
the offline training phase, we leverage transfer learning and fine-tune the model
with new audio data to expedite the training process. During the online phase, we
introduce a top-K probabilistic methodology for location prediction.

In the experimental setup, our system is tested in two distinct indoor environ-
ments (dimensions: 10m .× 10m and 10m .× 5m). The microphone array device
is placed at the center of the room for voice data collection. Assisted by deep
convolutional neural networks (DCNNs), our system is capable of yielding average
error margins of around .1.5m in these two environments.

3 Adversarial Machine Learning on Localization

Adversarial machine learning poses significant challenges to the reliability and
security of machine learning models. In the image classification task, Szegedy et
al. [59] first discover an intriguing weakness of DNNs. Despite their impressive high
accuracy, these DNNs exhibit surprising susceptibility to adversarial attacks, which
manifest as slight modifications to images that remain undetectable to the human
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Fig. 3 Attacks in the machine learning pipeline

eyes. These attacks have the potential to completely change the predictions made by
a neural network classifier for a given image. Moreover, the attacked models report
a high confidence score for the wrong prediction and a single perturbation to an
image can deceive various DNNs simultaneously.

We have implemented accurate localization systems with the help of deep
learning techniques by using the different kinds of wireless signals in Sect. 2.
These systems exhibit excellent accuracy in localization, owing to the exceptional
capabilities of deep learning models. Considering the aforementioned vulnerability
issue, it is crucial to conduct thorough research on the security aspects of these
models. Failing to address this critical issue may result in the deterioration of deep
learning-based localization systems, leading to a loss of their current capabilities
due to even minor perturbations.

In this chapter, we focus on two different types of attacks: backdoor attacks and
adversarial attacks. As shown in Fig. 3, backdoor attacks can be applied at multiple
stages throughout the machine learning pipeline, excluding the model testing phase.
For adversarial attacks, the attacker creates a perturbation that is specific to the given
input in the model deployment stage.

3.1 Backdoor Attack

The concept of backdoor attacks on deep learning is initially introduced in Bad-
Nets [25]. The training process for these attacks consists of two primary steps.
First, a set of poisoned images is generated by embedding a backdoor trigger
into selected benign images as shown in Fig. 4. This process creates poisoned
samples that are associated with target labels specified by the attacker. Second, the
poisoned training set is formed by combining both the poisoned and benign samples.
Consequently, the trained DNN becomes infected, exhibiting performance similar to
a model trained solely on benign samples when evaluated on benign testing samples.
However, if a poisoned image contains the previously defined trigger, its prediction
will be changed to the target label specified by the attacker.

In the majority of backdoor attack scenarios, implementing attacks requires
inserting a trigger before the training phase. This process has become increasingly
possible due to the extensive use of cloud platforms, pre-trained models, and
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Fig. 4 Example of two backdoor triggers used in BadNets

publicly available datasets within the contemporary deep learning landscape. As
illustrated in Fig. 3, malicious attackers can introduce harmful datasets in the
data collection step, and distribute problematic pre-trained models during model
selection, thereby impairing the performance of inference tasks. Additionally,
attackers can invade the cloud infrastructure to manipulate gradients throughout the
model training process, resulting in disruptions to the model’s performance. Consid-
ering these circumstances, backdoor attacks can be categorized into three primary
types: poisoning-based backdoor attacks, weights-oriented backdoor attacks, and
structure-modified backdoor attacks [39].

3.1.1 Backdoor Attack on 5G-Based Localization

This section focuses on discussing the application of poisoning-based backdoor
attacks on both indoor and outdoor localization systems using 5G massive MIMO
technology. We have designed experiments on the DeepMIMO dataset [3, 29]. The
input for our CNNs is ADP data, which is simply a linear transformation of the
CSI. The DeepMIMO outdoor scenario number 1 (O1) at 3.5 GHz band and indoor
scenario number 3 (I3) at 60 GHz are deployed as outdoor and indoor environments,
respectively. For the outdoor environment, a single base station is equipped with a
uniform linear array (ULA) with 64 antennas. The data generation process involves
generating 199,100 data points by varying the locations from row 1 to row 1,100.
The range of position coordinates varied from .(242.4, 297.2) to .(278.4, 517.0). The
indoor environment simulates a conference roomwith dimensions 10m .× 11m. The
position coordinates range from .(26.34, 6.18) to .(27.54, 11.67). When approaching
localization as a regression problem, we designate the target coordinates for
backdoor attacks as .(200, 200) for outdoor scenarios and .(0, 0) for indoor scenarios.

An overview of the backdoor attacks against the DNN-based 5G massive MIMO
localization system is depicted in Fig. 5 [82]. The poisoned ADP data is generated
by directly injecting a trigger into the original ADP. The sole difference between
the original input and the poisoned input lies in the presence of this trigger. The
poisoned input constitutes only a small fraction of the original input, and its quantity
can be adjusted by the attacker. We denote this fraction as the poisoning rate p.
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Fig. 5 Backdoor attacks on DNN-based mmWave/massive MIMO localization systems

During the training process, the original ADP data is employed as benign input
to optimize the model’s performance, aiming for accurate position predictions. Con-
versely, the poisoned input is introduced to deceive the model, causing it to generate
inaccurate position predictions. Once the training process is finished, the model
acquires the capability to predict positions. When fed with benign inputs, the model
accurately determines the location of the target device. However, the injection of
triggers into the inputs significantly diminishes the model’s performance, resulting
in incorrect predictions.

The objective of backdoor attacks can be defined as

.t∗ = arg max
t

d(Fθ (xi + t), Fθ (xi)), s.t. | t |≤ ε, (3)

where t represents the trigger, .xi is the ith input data, .Fθ represents the CNNmodel,
and .d(·) denotes a distance function. In this case, the Euclidean distance is chosen
as the distance function since it reflects the physical distance. The objective is to
find the optimal value of t , denoted as .t∗, that maximizes the distance between the
CNN model’s outputs when applied to the original input .xi and the perturbed input
.xi + t . By optimizing this objective, the trigger can effectively disrupt the model.
This optimization is subject to the constraint that the magnitude of t does not exceed
a specified threshold .ε.

As depicted in Fig. 6, We design two different types of triggers to launch
backdoor attacks. The first one is the one-pixel trigger, which involves targeting
a singular pixel to incite a backdoor attack. In this example, we specifically choose
the pixel located at the upper left corner. The selection of trigger position can be
further changed by advanced design. The second trigger is the random noise trigger.
Unlike the single-pixel trigger, this trigger has the same shape as the input ADP.
While these triggers are relatively simple, they form a basis for developing detailed,
task-specific triggers. Optimized through thoughtful design, they can fulfill diverse
task demands, improving backdoor attack efficiency.
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Fig. 6 Two different triggers. The one-pixel trigger is in the upper left corner, and the random
noise trigger is embedded in the whole input

For the indoor backdoor attack scenario, the input ADPs exhibit a range between
.0.0001 and .0.0162. To explore the impact of the one-pixel attack, we consider a set
of trigger values .[0.01, 0.005, 0.001, 0.0005, 0.0001]. Meanwhile, the set of poison-
ing rates p is set to .[0.005, 0.01, 0.1]. For the outdoor case, the ADP values span
a broader range from .0.0003 to .0.457. Due to the higher magnitudes compared to
the indoor case, we adjust the set of trigger values to .[0.1, 0.05, 0.01, 0.005, 0.001],
while maintaining the poisoning rate unchanged. This selection broadly covers both
the maximum and minimum values to effectively evaluate the attack’s impact.

Overall, the introduction of a one-pixel trigger does not significantly affect the
accuracy of the CNN in predicting locations on the benign dataset. However, it
should be noted that as the trigger magnitude decreases, there is a slight increase in
distance error. This suggests that a smaller trigger value has the potential to confuse
the model in recognizing the trigger. If the trigger value is sufficiently large, the one-
pixel attack can effectively impair the performance of the model without requiring
a significant amount of poisoned samples. Conversely, when the trigger value is
too small to effectively attack the model, increasing the poisoning rate can assist in
enhancing the attack capability.

Although the one-pixel attack has proven to be effective in deceiving localization
systems, it can be easily detected and eliminated due to the fixed location and value
of the trigger. Therefore, we next introduce the random noise attacks on localization
systems. As previously mentioned, the random noise trigger consists of a matrix of
normally distributed noise with the same shape as the inputs. We evaluate the impact
of different mean values .μ and standard deviations .σ of the normal distribution
underlying the trigger. In all the cases, we fix the poisoning rate p to .0.01.

The results presented in Fig. 7 indicate that using the random noise attack can
effectively fool the model and yield similar distance errors compared to the one-
pixel attack. In the case of indoor localization, setting the mean value to .10−4 allows
the random noise attack to degrade the system’s performance without affecting the
prediction of benign sample coordinates. Nevertheless, if the mean value is reduced
to .10−5, the noise becomes nearly indiscernible, particularly in light of the smallest
original input value of .0.0001. In this scenario, the effectiveness of the random noise
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Fig. 7 The distance error of random noise attacks on indoor and outdoor localization. (a) Indoor
localization. (b) Outdoor localization

attack diminishes. Although the distance errors of the poisoned samples remain
constant, the system fails to accurately predict the locations of the benign samples,
which contradicts the goal of the backdoor attacks.

For outdoor localization, the random noise attack continues to be effective
when the mean value is set to .10−4 for the poisoned samples. Simultaneously, the
system’s ability to accurately predict the benign samples’ coordinates decreases,
leading to an approximately 10m increase in distance error. Furthermore, when the
mean value is adjusted to .10−5, the random noise attacks behave differently. When
employing a larger standard deviation of .10−4, the backdoor attack successfully
manipulates the system, generating imprecise predictions for the poisoned samples,
while maintaining accurate predictions for the benign samples without sacrificing
precision. However, when the standard deviation is reduced to .10−5, the random
noise attack loses its efficacy entirely in fooling the localization system.

The aforementioned results reveal a trend of increasing distance errors on the
original dataset as the standard deviation decreases. This trend implies that the
reduction of trigger fluctuations poses an increased challenge for the DNN model in
distinguishing between benign and poisoned inputs. Due to the distinct locations
between the benign inputs and the poisoned inputs, the DNN model becomes
perplexed in predicting accurate locations as it struggles to recognize the triggers.
As a consequence, the model fails to generate accurate predictions, irrespective of
whether a trigger is present or absent.

In summary, regardless of whether it is a one-pixel attack or a random noise
attack, we successfully mislead the system to generate incorrect locations for
poisoned data, while still accurately predicting positions for original data. All
of these processes are carried out without requiring any knowledge about the
underlying model architecture. The one-pixel attack is straightforward to launch,
which only requires modifying a single value of the input. In contrast, the random
noise attack requires to balance between invisibility and effectiveness. In addition to
these two triggers, it is also feasible to design a series of different triggers tailored
to suit various situations.
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3.2 Adversarial Attack

An adversarial example refers to a modified version of the original input that is
intentionally perturbed to confuse a machine learning technique [2]. To generate an
adversarial example, adversarial perturbations are added to the clean input. These
perturbations are carefully calculated to exploit the model’s sensitivity to small
changes and to induce undesired predictions.

Let .xi denotes the input data (e.g., CSI tensors), and y denotes the output (e.g.,
object coordinates). We denote the DNN model as .Fθ , where .θ represents the fixed
parameters of the model. The loss function is denoted as .L, which could be a cross-
entropy loss for floor classification. The objective of the adversary is to degrade
the performance of the DNN model by maximizing the loss function through the
following optimization problem:

.η = arg max
η
L(Fθ∗(xi + η), Fθ∗(xi)), (4)

where .η represents the adversarial perturbation. It is important to note that in this
setting, we cannot adjust the parameters .θ∗ of the model once it has finished training.
This difference distinguishes adversarial attacks from backdoor attacks, where the
model’s parameters can be modified to incorporate a backdoor.

White-box and black-box attacks are two primary types of adversarial attacks
that differ in their knowledge about the targeted machine learning model. A white-
box attack refers to scenarios where the attacker has complete knowledge of the
targeted model. This includes information such as the architecture of the model, the
parameters such as weights and biases, the training method, and even the dataset
used for training. With this comprehensive knowledge, the adversary can construct
adversarial examples that are highly effective at fooling the model.

On the other hand, a black-box attack is carried out under the assumption that the
attacker has no knowledge of the targeted model’s architecture or parameters [45].
The adversary only has access to the model’s inputs and the corresponding outputs
it generates. The term black-box refers to the idea that the internal workings of
the model remain unknown and inaccessible to the attacker, making the creation of
effective adversarial examples more challenging.

Besides, adversarial training is a widely-used defense technique for improving
the robustness of machine learning models against adversarial attacks. The idea
behind adversarial training is to augment the training process by including adversar-
ial examples during the training phase. This approach enables the model to learn and
adapt to such perturbations, thereby increasing its resilience against future attacks.

3.2.1 Classic Attack Methods

The fast gradient sign method (FGSM) is a computationally efficient method for
crafting adversarial examples [23]. The perturbation, denoted as .η, is determined by
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the sign of the gradient and scaled by a small constant known as the step size, as

.η = ϵ · sign(∇xL(θ, x, y)), (5)

where .θ represents the parameters of a well-trained DNN model; .x is the input, and
y is its corresponding label. The hyperparameter .ϵ controls the magnitude of the
perturbation. By utilizing the first derivative of the loss function .L(θ, x, y) through
the backpropagation algorithm, the perturbation .η can be calculated.

In [43], FGSM is modified by canceling the .sign(·) function in Eq. (5). This
modified approach called the fast gradient method (FGM), serves as a generalization
of FGSM, where the perturbation is given by

.η = ϵ · ∇xL(θ, x, y)

‖∇xL(θ, x, y)‖2
. (6)

The perturbation is normalized by the .L2 norm .‖·‖2 of the gradient.
Both FGSM and FGM are referred to as one-step attacks since they generate

adversarial examples with a single modification based on gradient information.
This attribute makes them computationally efficient and relatively straightforward
to implement. One-step attacks provide a practical advantage when there are
constraints on computational resources or when a quick evaluation of the model’s
vulnerability to adversarial examples is required.

Based on the one-step FGM, an iterative variant called projected gradient descent
(PGD) is proposed in [41]. The purpose of PGD is to improve the classifier’s
resilience against first-order attacks. This iterative approach generates adversarial
examples as follows:

. xadv
0 = x, . (7)

xadv
N+1 = Clipx,ϵ

{
xadv
N + α · ∇xL(θ,x,y)

‖∇xL(θ,x,y)‖2
}

, (8)

where the adversarial example .xadv
N is created by taking a small step, determined

by the hyperparameter .α, in the direction of the gradient normalized by its L.
2

norm in each iteration. The value of .α is typically set to .ϵ/N for a given .ϵ, where
N represents the number of iterations. This choice ensures that the perturbations
remain small and confined within the .Lp ball around the original input .x. If needed,
the .Clipx,ϵ projects the perturbation back into the .Lp ball. PGD has been shown to
be a potent adversarial attack method, surpassing the effectiveness of the one-step
FGSM/FGM. However, it should be noted that the improved performance of PGD
comes at the expense of reduced transferability and computational efficiency.

The PGD approach can encounter difficulties in easily reaching the global
maximum since it greedily takes the direction of gradients in every iteration. To
address this limitation, a momentum-based method is introduced by incorporating
it into the FGSM attack. Instead of solely using the gradient in the current iteration
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to update the perturbation, the momentum iterative method (MIM) leverages
the gradients from previous iterations to guide the perturbation update [19]. By
leveraging the memory of past gradients, MIM effectively avoids the problem
of local maxima encountered in PGD. Consequently, MIM resolves the dilemma
between the “underfitted” FGSM and the “overfitted” PGD, providing a more
balanced and effective approach.

To generate adversarial examples using MIM, the following iterative procedure
is employed:

.

{
g0 = 0
xadv
0 = 0

. (9)

⎧
⎨
⎩
gN+1 = μ · gN + ∇xL(θ,xadv

N ,y)∥∥∇xL(θ,xadv
N ,y)

∥∥
2

xadv
N+1 = xadv

N + α · sign(gN+1),
(10)

where .gN+1 contains the gradients from previous .(N − 1) iterations with a decay
factor of .μ. The value of .α can also be set as .ϵ/N when a specific value of .ϵ is
given.

3.2.2 Adversarial Training

To enhance the robustness of the localization system against adversarial attacks, we
employ a defense technique called adversarial training. Adversarial training aims
to address the inherent vulnerabilities of machine learning models when faced with
adversarial attacks. This approach involves training the models using both regular
data and carefully constructed adversarial examples.

The fundamental concept behind adversarial training is to modify the original
loss function by incorporating an adversarial term, thereby increasing the model’s
resistance to adversarial examples. The adversarial loss function can be repre-
sented as

.L̃(θ, x, y) = γ ·L(θ, x, y) + (1 − γ ) ·L(θ, x + η, y), (11)

where .L̃ represents the modified adversarial loss function; .η represents the perturba-
tion applied to the input and .γ is a hyperparameter to control the relative importance
of the loss terms for the original and adversarial examples [23].

Through the inclusion of adversarial examples in the training process, the model
is encouraged to learn decision boundaries that are more robust to small adversarial
perturbations. In a sense, adversarial training can be seen as a specialized form
of data augmentation, focusing on generating adversarial perturbations to train the
model to be robust against similar attacks.
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3.2.3 Adversarial Attack on 5G-Based Localization

In Sect. 3.1.1, we discussed the impact of backdoor attacks on 5G-based localization
systems. In this section, we will examine the previously mentioned adversarial
attacks and adversarial training on 5G-based localization systems [12]. ADP images
continue to serve as the input to the CNN and the dataset remains unchanged.

Figure 8 presents the results for the indoor scenario, where the value of epsilon
.ϵ is increased from .0.0005 to .0.001. It is observed that as epsilon increases, the
distance errors also increase due to the introduction of larger perturbations into the
ADP image. Among the three attack methods, the MIM attack yields the highest
distance error, while the FGSM attack results in the lowest error. This trend aligns
with the discussion in Sect. 3.2.1. Figure 8b illustrates the impact of adversarial
training. Following adversarial training, the DNN model exhibits resistance to
all three attacks. However, the effects of these attacks are still more significant
compared to the results of the unattacked model. In particular, the MIM attack
continues to produce larger distance errors than other attacks.

For the outdoor localization case, we deploy larger epsilons ranging from .0.01
to .0.05. Consistent with the findings in the indoor environment, the error grows
as epsilon increases. The FGSM attack remains the least effective among the
three methods. Specifically, when employing the MIM attack with an epsilon
value of .0.05, the distance error can reach approximately 197m. Compared to
the indoor scenario, the DNN model exhibits significantly lower distance errors of
approximately 20m across all three attacks after deploying adversarial training.

3.2.4 Adversarial Attack on Wi-Fi-Based Localization

Section 2.1 has introduced the Wi-Fi-based localization system. This section will
discuss adversarial attacks and adversarial training on RSS-based [47] and CSI-
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Fig. 8 Effect of adversarial attacks on 5G-based indoor localization: distance error comparison
pre and post adversarial training. (a) Original model. (b) Model after adversarial training
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based [71] localization. We performed experiments on the UJIIndoorLoc dataset to
evaluate the RSS-based method. The three attacks mentioned above are conducted
separately. All adversarial attacks are executed during the testing stage, employing
various hyperparameters .ϵ.

Figure 9 shows the prediction results of the DNN-based localization system
and the results after being attacked by FGSM. The RSS-based positioning system
exhibits commendable overall accuracy, with only a few instances of significant
errors, which fall within acceptable thresholds. However, when subjected to the
FGSM attack, the accuracy of the positioning system experiences a substantial
decline, resulting in a significant deviation between the predicted position and the
actual position. Such a substantial reduction in accuracy is completely unacceptable.

Figure 10 illustrates the outcomes of three attacks before and after undergoing
adversarial training. As the value of epsilon .ϵ increases, the attack becomes more
powerful, resulting in less accurate location predictions. Both PGD andMIM attacks
exhibit similar capabilities in deceiving the model and outperform FGSM attacks.
Specifically, when employing FGSMwith increasing epsilon values, the localization
errors steadily rise from approximately 7m to around 38m. On the other hand, for

(a) (b)

Fig. 9 Localization results with and without FGSM attack. (a) Prediction without attacks. (b)
Prediction under FGSM attack (.ϵ = 0.005)
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Fig. 10 Localization system performance with FGSM, PGD, andMIM attacks. (a) Original model
under attacks. (b) Adversarial trained model under attacks
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Fig. 11 Effect of white-box
attacks, adversarial training,
and black-box attacks on the
distance error of the
localization models
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PGD and MIM attacks, the distance error reaches about 43m at an epsilon value
of .0.01. However, all distance errors decrease after deploying adversarial training.
In the case of the FGSM attack, deploying adversarial training reduces the distance
error to approximately 12m at an epsilon value of .0.01, which is significantly lower
than the original result. As for MIM and PGD attacks, adversarial training leads to a
decline of about 20m in distance errors. Despite the effectiveness of incorporating
adversarial training as a defense mechanism, the distance error is still considerably
higher than the error without attacks.

For the CSI-based localization system, we also studied its performance subjected
to adversarial attacks and adversarial training. We propose AdvLoc, an adversarial
deep learning framework for indoor localization. Our input CSI tensor encompasses
three slices. Two slices are generated with the estimated AOA using the phase
difference data from the three receiver antennas, while the third slice incorporates
the measured CSI amplitude values. In the RSS-based localization systems, we only
focus on the white-box attacks. To explore more realistic attack scenarios, we also
investigate the black-box attacks in the AdvLoc system. Since we lack information
about the target model, we generate adversarial perturbations based on a surrogate
model. Leveraging the transferability of adversarial examples, we can mislead the
black-box model using these crafted adversarial samples.

Figure 11 presents the results of white-box attacks, adversarial training, and
black-box attacks in the CSI-based localization system. The indoor area is 6m .×
9m, resulting in significantly smaller distance errors than previous experiments. We
denote the model that has deployed adversarial training as AT model.

In the white-box attack scenario, the results of the three attacks exhibit a
similar trend. Specifically, the FGSM attack proves to be the least effective method,
while the MIM attack yields the highest distance error. This trend aligns with the
discussion presented earlier in Sect. 3.2.1. After deploying adversarial training, the
AT model demonstrates resilience against FGSM attacks and achieves a similar
precision level compared to an unattacked model. However, adversarial training
offers limited mitigation against the PGD andMIM attacks, as the distance errors for
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the AT model only experience a slight reduction. In the case of black-box attacks,
it is surprising to observe that the FGSM attack results in the highest distance error,
although it still decreases compared to the white-box attacks. On the other hand, the
PGD and MIM attacks exhibit a significant reduction in their attack effectiveness
when confronted with the AT model, resulting in smaller distance errors than those
observed in the FGSM attacks. This finding suggests that one-step attacks may
be feasibly transferred from surrogate models, while iterative attacks require more
complex designs to successfully conduct black-box attacks.

4 Conclusion

In this chapter, we presented a comprehensive review of adversarial machine
learning for wireless localization systems. Initially, we introduced the concept of
machine learning-based localization using various wireless technologies such as
Wi-Fi, 5G, and microphone arrays. Subsequently, we delved into backdoor attacks
and adversarial attacks specifically targeting Wi-Fi-based localization systems. To
emphasize the significance of adversarial machine learning, we demonstrated the
impact of classic attack methods on the precision of localization systems. Even
a simple attack can substantially degrade the performance of the system. Despite
deploying adversarial training as a defense mechanism, we found that it was not
sufficient to fully restore the model to its unattacked performance.

In future work, it is crucial to explore more effective attack strategies as well
as robust defense mechanisms. The relationship between attack and defense is an
ongoing game. Advancements in attacks drive the evolution of defenses, creating a
technological race. In order to protect wireless localization systems from potential
attacks, it is crucial to develop adversarial machine learning techniques.
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Localizing Spectrum Offenders Using 
Crowdsourcing 

Frost Mitchell, J. Phillip Smith, Shamik Sarkar, Neal Patwari, 
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1 Introduction 

Transmitter localization is the task of precisely locating radio-frequency (RF) 
transmitters using information from sensors distributed over an area. The increasing 
affordability of software-defined radios (SDRs) such as the HackRF or Flipper Zero 
has made it convenient for potential wrongdoers to illegally transmit in protected 
spectrum. Additionally, inexpensive jamming devices that are widely available 
pose a threat to legitimate wireless communication. Authorities consistently face 
the painstaking task of detecting and tracking both malicious transmissions and 
unintentional broadcasts in prohibited bands [5, 7]. Hence, effectively addressing the 
challenge of transmitter localization, particularly in localizing spectrum offenders, 
is crucial for maintaining the effective wireless communications. Enforcing spec-
trum regulations requires the ability to locate unauthorized users. 

Typically, transmitter localization involves a set of receivers which measure 
RF information such as received signal strength (RSS), angle of arrival (AoA), 
time difference of arrival (TDoA), or other signal characteristics. A localization 
algorithm uses information from these sensors to estimate the coordinates of the 
transmitter(s) in the area. Additionally, some techniques also estimate the transmit 
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Fig. 1 An example of 
crowdsourcing for 
localization. A single fixed 
sensor can monitor the area, 
but data from mobile user 
devices is required to provide 
additional sensor density and 
accurately localize the target 

Localization at 
Fusion Center 

Mobile User Devices 

Fixed Infrastructure Sensor 

Target to Localize 

power. To achieve accurate transmitter localization, it is essential to have dense 
sensor coverage of the region of interest. As research suggests, localization accuracy 
is directly related to the distance between sensors [24]. In many scenarios, deploying 
a dense network of sensors is not feasible due to high infrastructure costs. 

To overcome this challenge, crowdsourcing sensor information from existing 
wireless devices, including mobile devices, becomes a viable solution. By leverag-
ing measurements from a crowd of devices, sensor coverage can be substantially 
increases without incurring additional infrastructure costs. This idea is shown 
in Fig. 1, where measurements from various devices in the crowd are shared to 
accurately localize a transmitter. 

Sourcing data from a crowd of sensors presents additional challenges. Many 
localization techniques require calibrated inputs, but devices in a crowd will 
have different hardware and sensing capabilities, and virtually no devices will 
be calibrated to a common reference. Moreover, the mobility of sensors in the 
crowd is a challenge. For example, when sensors covering a region of interest are 
stationary, the localization problem can be relatively straightforward, since the fixed 
locations of these devices provide a constant frame of reference for locating mobile 
transmitters. The setting becomes more challenging when both transmitters and 
sensors are fully mobile, providing no consistent reference. We present solutions 
to address these challenges in Sect. 3. 

Another challenge unique to crowdsourced localization is the security risk 
introduced by utilizing measurements from a crowd of untrusted, anonymous users. 
This situation opens up the possibility of poisoning attacks, where an adversary 
submits false data to compromise the localization system. In Sect. 4, we present a 
general framework for adversarial attacks that an adversary could deploy as part of 
a sensor crowd. Additionally, we discuss potential defense mechanisms to counter
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such attacks. We then share results from a case study on adversarial attacks and 
defenses in Sect. 5. 

Localization using crowdsourcing depends on users sharing sensitive location 
information with a central service. Although privacy considerations are not the focus 
of this chapter, we touch briefly on solutions for preserving location privacy in 
Sect. 6. Finally, in Sect. 7 we explore various open problems and potential future 
directions for advancing crowdsourced localization techniques 

1.1 Problem Setting 

In our localization scenario, we consider a limited geographic area with multiple 
users utilizing the available spectrum. These users may be active transmitters or pas-
sive users, such as those involved in radio astronomy or remote sensing applications. 
Both transmitters and receivers are assumed to have unrestricted mobility within the 
geographic area leading to dynamic changes to the RF environment. Additionally, 
there may be multiple simultaneous receivers in a region. 

Our localization system relies solely on RSS measurements for estimating trans-
mitter locations. We do not consider techniques like AoA or TDoA in our setting, 
as AoA requires specialized receiver hardware and TDoA requires crowdsourced 
recording and sharing of users’ raw communication signals, which has serious 
privacy implications. To ensure data privacy and accommodate various devices in 
the crowd, we focus exclusively on localization using RSS values in this chapter. 

We assume the presence of a central manager or fusion center, responsible for 
collecting RSS measurements and location data from the nodes participating in 
the crowd. The fusion center facilitates the data collection process and executes 
a localization algorithm. 

Given that reporting sensing information incurs energy and bandwidth overhead 
for mobile users, we assume the participants need to be incentivized for their 
contributions, but we do not investigate any incentive frameworks in this chapter. 
Similarly, while we motivate our work by assuming localization is used to enforce 
spectrum usage, we do not explore the specific aspects related to enforcement or 
interference mitigation in this chapter. Our focus is on accurate localization using 
crowdsourced data, both with and without the presence of adversaries in the crowd. 

2 Basics of RSS Localization 

One of the fundamental approaches to transmitter localization is based on RSS 
measurements. This approach uses the principle that signal strength varies according 
to the positions of both transmitter and receiver, typically decreasing with the 
distance and obstructions between them. The change in RSS forms the basis for
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estimating the transmitter’s location. This technique is particularly appealing due to 
its simplicity, cost-effectiveness, and the widespread availability of sensor devices. 

In this section, we dive into the two primary approaches for device localization: 
physics-based methods, which use the characteristics of the environment along with 
physical models for signal propagation or path loss to estimate the transmitter’s 
coordinates, and fingerprint-based methods, which use previously collected data 
to construct a reference for localization, typically in the form of a database or 
ML model. Although every localization technique may not fit neatly into these 
categories, most methods are designed based on either physical models or models 
derived from collected data. 

We also explore the emerging paradigm of neural network-based localization, 
a data-driven approach which uses computer vision techniques to process sensor 
information and predict transmitter coordinates. This method does not come without 
challenges, such as loss of precision and the selection of model hyper-parameters 
and architecture to achieve acceptable accuracy. 

2.1 Physics-Based Localization 

Physics-based approaches rely on the principles of signal propagation and the 
physical characteristics of the environment in order to estimate device location. 
These models can range in precision and complexity, and typically use some 
environmental information, such as path loss exponents for simple path loss models 
or building and obstacle information for ray tracing and propagation simulations. 

Physics-based localization combines the estimates of sensors at different loca-
tions to estimate the target location. The simplest possible case is shown in 
Fig. 2, where signal strength from a transmitter with known power is used to 
estimate distances to the target for localization. This becomes a significantly more 
challenging problem if the transmitter power or environmental characteristics are 

Fig. 2 If the transmitter 
power is known, path loss 
models can be used to 
estimate the distance from 
each sensor using RSS 
measurements. This approach 
suffers when the path loss 
model does not accurately 
represent propagation in the 
environment 

Estimated 
Tx Distance
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unknown. To deal with the challenge of unknown transmit power, a modified 
maximum likelihood estimation (MLE) [22] can be used.1 For dealing with the 
challenge of environmental characteristics in trilateration, the EZ algorithm [6] uses  
a genetic optimization algorithm. Another way to deal with distance uncertainties is 
to use a significantly higher number of measurements compared to the case in Fig. 2. 
Such an approach is discussed in [11]. Since the distance estimates of the transmitter 
using the path loss model are often inaccurate, methods that use the rank ordering 
of the RSS values may be more effective. For example, the Echolocation [39] 
algorithm (EL) counters this problem by applying a non-parametric method popular 
in statistics, called ranking. 

While path loss models are statistical models which summarize the RF charac-
teristics of an environment, more complex models can be used for localization. For 
example, ray tracing in a 3D modeled environment is a computationally intensive 
method of simulating the path loss on a link, producing far more detailed estimates 
of signal strength at a given location. Unfortunately, ray tracing can still experience 
high error rates due to factors like inaccurate 3D models, changes in the environment 
over time, or flawed physical models [15, 34, 35]. 

In scenarios where detailed environmental information is lacking, such as 
complex multipath scenarios or rapidly changing conditions, physical models may 
be insufficient for accurate and robust localization. As a result, many researchers 
have turned towards exploring fingerprint-based methods in an attempt to capture 
the necessary characteristics for precise localization. 

2.2 Fingerprint-Based Localization 

Fingerprinting methods are data-based approaches that use pre-existing knowledge 
or “fingerprints” of the signal characteristics from known transmitter locations. We 
assume fingerprint data includes RSS measurements, but it could also include other 
channel information and statistics or even features extracted from the signal using 
ML methods. These fingerprints can be used in a database of known locations; 
given the current conditions and the locations in the database, the target location 
is estimated based on the closest match in the database. 

Localization of a mobile node via fingerprinting can be considered a learning 
problem, and it has been studied extensively in the context of WiFi fingerprinting. 
The basic idea is to capture RSS fingerprints, from static access points (AP), for all 
the locations in an indoor area. Subsequently, the location of a mobile node in the 
same area is obtained by searching for a match between the current RSS fingerprint 
and the previously collected RSS fingerprints by deterministic/probabilistic methods 
[3, 40]. This method requires extensive manual effort in collecting the fingerprints 
during training. To circumvent this problem, researchers have investigated ways

1 For the case of known transmit power, a solution has been presented in [23]. 
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to make the system work even if the fingerprints are spatially sparse [13, 29, 30]. 
They have also used crowdsourcing for collecting the training fingerprints [25, 36]. 
Irrespective of the approach, these learning-based localization methods ultimately 
depend on the RSS to/from the nearby static APs. If both the transmitter and the 
receivers are continually mobile none of these approaches can be adopted directly. 
One way to perform fingerprinting in such scenarios is to leverage interpolation 
methods as discussed in [27]. 

The chief advantage of fingerprint-based methods is that with a large corpus 
of data, this technique can be applied anywhere, indoors or outdoors, with or 
without line-of-sight, in any environment. Fingerprint methods also have significant 
disadvantages as well. As mentioned previously, fingerprints may require a set of 
static APs. Fingerprinting may fail if some devices are offline. As well, a database 
needs to be extensive enough to capture the unique environmental characteristics. 
The challenge of collecting such a dataset may be feasible in controlled indoor 
environments but more difficult in outdoor or dynamic environments. Additionally, 
as the size of the dataset grows, more sophisticated data structures may be required 
to efficiently handle fingerprints. 

2.3 Neural Networks for Localization 

Recent works [18, 38, 41, 43] have presented a new paradigm for ML-based 
localization using computer vision techniques. RSS information is encoded in a 
2D image which represents a birds-eye view of the sensor locations, with the pixel 
intensity set to the RSS value of the sensor. This sensor image format neatly captures 
the spatial relationship between sensors. Convolutional neural networks (CNNs) 
developed for image processing can then be used for localization. 

An overview of this process is shown in Fig. 3. Crowdsourced sensor measure-
ments are received by the fusion center and encoded into a 2D image. Optionally, 
the image can be combined with other modes of information, such as elevation 

Transmitter 
Coordinates 

CNN 
Localization 

Sensor Crowd RSS Input Image 

Target Image 

Fig. 3 An overview of the process of CNN-based localization. Sensor RSS values are converted 
to an image which is input to the CNN. The model outputs either predicted transmitter coordinates, 
or an image predicting the location of transmitters
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and building footprints [38], sensor calibration [19], or environmental features as 
outlined in [31]. The 2D image is then processed by the CNN, which produces 
either a similar 2D image marking the location of the transmitter (as in [18, 38, 41]), 
or directly predicting transmitter coordinates (as in [19, 43]). 

This process of converting sensor coordinates to a 2D image has a few problems. 
First, there is a loss of precision as real-valued GPS coordinates are converted to 
pixels. The pixel scale, or meters-per-pixel, can have a huge impact on how well 
a CNN can perform localization. A poorly chosen pixel scale can result in up to a 
.10× increase in error [19]. 

Another problem with image-based localization is that sensor values must be 
converted to an image, and all targets are assumed to be located within the area 
represented by the image. Though some non-image-based techniques also have 
this problem, traditional physics-based localization techniques are not limited to 
particular regions. Most localization settings assume that the target is in or near the 
convex hull of the senors; a full exploration of if and when localization techniques 
can accurately locate transmitters that are far any sensor nodes remains an ongoing 
area of research. 

In general, CNN-based localization models use either direct coordinate predic-
tion in the form of a regression problem [43], or use a CNN for image-to-image 
localization to produce an image-map, similar to the input, where the location 
of transmitters is marked by high-value pixels [41]. The primary advantage of 
directly estimating coordinates is that the localization error is differentiable and 
easy to calculate, meaning the entire process is easily optimized in the case of one 
transmitter, and only slightly more complex in the case of multiple transmitters. 
Meanwhile, image-to-image localization produces an output which is visually 
intuitive, and performs well in both simulated [38, 41] and real-world [18, 19, 42] 
evaluations. 

One obstacle in the image-to-image formulation is that predictions are discrete 
pixels rather than real-valued coordinates. In order to achieve higher accuracy, 
many works use sub-pixel prediction [19, 41], using either weighted averages 
from different predictions or even additional ML models to estimate transmitter 
coordinates on a sub-pixel level. 

2.3.1 Augmenting with Physical Models 

One primary appeal of learning-based localization is that additional features beyond 
RSS values can be used for localization. Information from physics-based approaches 
can be incorporated into the model. For example, LocUNet is a CNN that combines 
sensor information with building footprints and estimated propagation maps for 
accurate localization. Another potential approach comes from Tadik et al. [31], 
where they use environmental features including line-of-sight, number of obstacles, 
elevation angle, and street alignment as inputs to a neural network which learns 
corrections that are applied to a physics-based propagation model. This approach
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could be applied to localization to similarly provide relevant environmental features 
for each pixel, providing more information for accurate localization. 

3 Recent Localization Techniques 

In this section we present an exploration of several localization techniques proposed 
by the authors, all of which solved existing challenges in the context of localization 
using crowdsourcing. We begin with SPLOT [11], a physics-based method that 
localizes simultaneous transmitters. We then present LLOCUS [27], which uses 
interpolation and learning methods to allow for unrestricted device mobility as well 
as localizing devices with unknown transmit power. We then present TL;DL [18] 
and CUTL [19], CNN-based localization techniques which achieve a higher degree 
of accuracy while solving challenges of limited datasets and heterogeneous sensors 
without calibration. Additionally, we explore the difficulty of localization on inputs 
that differ significantly from the training data. 

3.1 SPLOT 

Simultaneous Power-based Localization of Transmitters [11] is a 2017 physics-
based technique that is capable of localizing multiple transmitters that are active 
simultaneously. To deal with the problem of multi-transmitter localization, SPLOT 
relies on two key observations. First, receivers that are located near the transmitter 
generally observe higher power than receivers that are distant from the transmitter. 
Second, the observed RSS at each receiver is primarily affected by the nearest trans-
mitter. Based on these observations, the problem of localizing multiple transmitters 
that are active simultaneously can be transformed into a set of single transmitter 
localization problems. To do so, first, SPLOT finds the local maxima of RSS values 
(measured by receivers) that are greater than a predefined threshold. The predefined 
threshold is set to the minimum RSS that a receiver observes when a transmitter 
is near it. With the knowledge of the local maxima, the localization problem can 
be reduced to finding K transmitters, where K is equal to the number of local 
maxima. For each local maximum, SPLOT locates a single transmitter. For each 
single transmitter localization, SPLOT considers the RSS measurements that are 
only in the vicinity of the local maxima. This helps in reducing the computational 
complexity and improving localization accuracy. The method used for localizing 
each of the single transmitters is briefly described in the following. 

The RSS values at the receivers, .y = [y1, y2, . . . , yL], can be modeled as: 

.y = Wx + n, (1)
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where . n represents a vector of noise and fading contributions, . x = [x1, x2, . . . , xQ]
is a power field where . xi represents the power emitted from position i (assuming 
there are Q discretized/pixelized positions), and . W is an .L × Q matrix where . Wij

represents the path loss between receiver location i and transmitter position j . The  
weights .Wij are calculated using a path loss exponent model with the path loss 
exponent derived using some calibration data. An estimate of the power field, . ̂x, can 
be found using a regularized least-squares approach to the inverse problem. Finally, 
the transmitter’s location is estimated as the location corresponding to the maximum 
value of . ̂x. Further mathematical details of SPLOT can be found in [11]. 

The primary advantage of SPLOT is that it can be used to localize multiple 
unauthorized transmitters if they are active simultaneously. At the same time, 
SPLOT can tackle scenarios where one unauthorized transmitter is active alongside 
an authorized transmitter. SPLOT also has a couple of limitations. First, it uses a 
radio wave propagation path loss model, which may not be appropriate for all radio 
environments. This can affect the localization accuracy of SPLOT. Second, SPLOT 
does not consider the fact that different transmitters can have different transmit 
power, especially when some transmitters are adversarial. This issue can hinder 
SPLOT’s capability of detecting the number of simultaneously active transmitters. 

3.2 LLOCUS 

LLOCUS [27] uses a crowdsourcing framework similar to SPLOT, allowing for the 
mobility of both sensors and transmitters. Like SPLOT, LLOCUS localizes multiple 
transmitters by finding local maxima in spatial sensor information and localizing 
individual transmitters associated with the local maximas. However, LLOCUS 
addresses the limitations of SPLOT. Specifically, LLOCUS uses a learning-based 
approach and does not depend on a physics-based path loss model. Additionally, it 
can tackle the problem of unknown and dissimilar power of the transmitters. 

LLOCUS uses a multi-step process for multiple transmitter localization and 
transmit power estimation. First, the number of active transmitters is estimated 
based on the number of local maxima in the RSS data. Then the transmit power of 
each transmitter (associated with each local maxima) is estimated using an SVM-
based regression method. Importantly, the transmit power estimation is done before 
the localization. This not only provides the capability of estimating the power of 
active transmitters, but it is also crucial in overcoming the second limitation of 
SPLOT. The estimated transmit power is used to form a region of presence around 
each local maxima. The area of each region is proportional to the corresponding 
estimated transmit power. Next, for each region of presence, the estimated transmit 
power is used to scale the measured RSS values within that region to match a 
common reference transmit power. Finally, these scaled RSS values are used to 
localize the transmitter within that region. The steps described above are pictorially 
depicted in Fig. 4.



246 F. Mitchell et al.

Fig. 4 An overview of the multi-source localization process in LLOCUS. Received power at 
sensors is indicated by orange bars. The Tx power (purple bar) is estimated, then sensors around 
each local maxima are used to localize the transmitter 

Table 1 Comparison of LLOCUS and SPLOT [27] 

SPLOT LLOCUS 

Experimental setup .r̄m .r̄f .ϵ̄p [m] .r̄m .r̄f . ϵ̄p [m]

2–3 active transmitters, no power variation .0.04 .0.1 .10.94 .0.05 .0.1 . 6.09

1 active transmitter, power variation .0.01 .0.38 .12.7 .0.01 .0.1 . 4.5

For each single transmitter localization, LLOCUS uses a learning-based 
approach, specifically, a fingerprinting approach. Since sensors are assumed to 
be mobile, traditional fingerprinting methods that require a static reference cannot 
be used. In order to associate RSS values with a static context, LLOCUS interpolates 
RSS values to a specific set of fixed locations. With the interpolated RSS values at 
the fixed locations as fingerprints, a radial basis interpolation method is used for 
localization. 

Table 1 shows the performance comparison of SPLOT and LLOCUS based on 
an indoor dataset described in [27]. In this table, . ̄rm is the missed detection rate, . ̄rf
is the false positive rate, and . ̄ϵp is the penalized localization error (penalty is added 
for missed or excess transmitters). When transmitters have a fixed transmit power, 
SPLOT and LLOCUS have similar detection rates, but LLOCUS is significantly 
more accurate in localization error. When transmit power varies, LLOCUS has a 
significantly lower false positive rate. 

Although both SPLOT and LLOCUS localize multiple transmitters, the assump-
tion that each transmitter is represented by a local maximum in the RSS measure-
ments may not always be true. Two low-powered transmitters in the same band could 
be indistinguishable if there were not sufficient sensor coverage to provide a local 
maximum near each transmitter. Also, if two transmitters are very close they may 
not give rise to two distinguishable local maxima, especially when the receivers are 
sparse.
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3.3 TL;DL 

Following other works in the field [41, 43], Transmitter Localization with Deep 
Learning (TL;DL) [18] utilizes a UNet architecture [26], a CNN with more layers 
than previous techniques. This deeper model improves accuracy rates while still 
maintaining a runtime of less than 20 ms on a consumer grade CPU. TL;DL also 
uses data augmentation to greatly improve localization in practical settings by using 
sensor dropout. During training iterations, only a random subset of the sensor data 
is used for localization, so the model does not become dependent on certain fixed 
locations or characteristics of the training data which may not be present during 
evaluation. For limited datasets with less than 100 training samples, sensor dropout 
improved accuracy by up to 75% compared to models trained without training data 
augmentation. 

Previous works had only been evaluated on simulated data, so in evaluating 
TL;DL we tested accuracy only on real-world, indoor and outdoor datasets. Table 2 
shows the results of this evaluation, using the same notation as in Table 1. TL;DL 
had the lowest localization error in all tests when including penalties for detection 
errors, and consistently better performance than other techniques in detection rates. 

Since TL;DL does not make the assumption that all sensors are represented 
by local maxima, the technique surpasses other methods at detecting multiple 
transmitters with a low sensor density. In the most challenging case (Dataset 4), 
there are up to 5 simultaneous transmitters. Sensors are placed non-uniformly and 
with very low density, but TL;DL was still able to detect 94% of transmitters, 
compared to LLOCUS and SPLOT which detected 18% and 33% of transmitters, 
respectively. 

3.4 CUTL 

Calibrated UNet Transmitter Localization, or CUTL [19], advances CNN localiza-
tion by applying a learned pseudo-calibration. Since most sensors will not have 
any calibrated reference power, we learn calibration parameters for each type of 

Table 2 Localization results using TL;DL [18] 

Dataset 1 (1 Tx) Dataset 2 (1–2 Tx) Dataset 3 (1–2 Tx) Dataset 4 (1–5 Tx) 

.r̄d .r̄f .ϵp .r̄d .r̄f .ϵp .r̄d .r̄f .ϵp .r̄d .r̄f . ϵp

TL;DL [18] 0.25 0.02 11.6 0.03 0.03 3.7 0 0.02 1.6 0.06 0.06 9.5 
DeepTx [43] 0.14 0.07 15.5 0.02 0.09 12.3 0 0.02 9.0 0.02 0.10 12.1 

DMTL [41] 0.60 0.04 14.5 0.61 0.07 16.2 0.40 0.14 17.3 0.11 0.13 15.2 

LLOCUS [27] 0.28 0.30 17.0 0.52 0.06 12.7 0.08 0.22 13.6 0.82 0 26.8 

SPLOT [11] 0 0.57 18.8 0 0.45 16.8 0 0.19 10.3 0.67 0 24.7

Bold values show the lowest error.
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sensor in a crowd. For each category of sensor device, such as mobile devices, 
ground level dedicated sensors, or rooftop installations, we learn parameters to scale 
the RSS values from that category. The assumption is that devices with similar 
hardware and placement patterns will have more similar RSS values, an assumption 
that we observed to be true in several different real-world datasets [17, 18]. In 
our evaluation, we observed mobile sensors had significantly higher noise levels, 
experienced more interference, and also had inconsistent noise floors from device to 
device. Our pseudo-calibration method learned to equalize the noise floor between 
these sensors and to slightly decrease the importance of mobile sensors in order to 
reduce sensitivity to noise. 

We compared direct coordinate prediction to image-to-image localization by 
training two UNet models, one with linear layers on the end which learn direct 
coordinate prediction, and the other using the image-to-image technique. Our results 
showed the image-to-image technique outperformed direct prediction in all of our 
tests, though only by a small margin. 

In the same work we also apply ensemble models for more accurate localization. 
The training data is divided into 5 parts, and 5 identical CNNs are trained on only 
4 of the parts. Then, at inference time, the localization estimate is the weighted 
average of the 5 models, based on the model confidence in each prediction. This 
resulted in up to 15% higher accuracy for image-to-image prediction models, and a 
modest gain of up to 5% for models using direct coordinate prediction. 

We also explored how input resolution affects accuracy. One might naively 
assume that increasing the resolution of the input will increase the accuracy since it 
involves less loss of precision, but this is not the case. Lower pixel scales result in 
higher input resolution and compute time, but this also harms the network’s ability to 
localize accurately due to the limited receptive field of CNN architectures. We also 
hypothesize that the mean-squared error loss function is not optimized successfully 
at very high resolutions. On the other hand, a large pixel scale will hurt accuracy 
due to the loss of precision in both inputs and outputs. We recommend that the pixel 
scale be chosen based on experimental validation, since an ideal pixel scale seems 
to be dependent on several factors, including the area of the region being considered 
for localization, the sensor density over this area, and the architecture of the CNN 
being used [19]. 

3.4.1 An Out-of-Distribution Dataset for Localization 

One of the primary challenges of fingerprint-based localization is when training data 
does not accurately represent samples at inference time. The ability to generalize to 
out-of-distribution (OOD) data is a fundamental problem in ML, one that cannot 
be solved using only the training data. In a practical localization system, this 
distribution shift occurs over time, such as from daily changes from traffic patterns, 
seasonal changes in foliage, construction and demolition of buildings, or gradual 
changes in the RF chain of both sensors and transmitters. Other distribution shifts
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might include training data that doesn’t cover a particular area of interest, or fails to 
account for interference from multiple transmitters. 

In order to evaluate localization techniques, we captured a dataset [17] of over  
4500 unique transmitter locations with heterogeneous sensors. The transmitter 
moved through a .4 km2 area and was carried on foot, while cycling, and in an 
automobile. RSS values were captured by 9–25 sensors which were both mobile 
and fixed, with a variety of antenna configurations and placements. 

To measure the ability of a localization algorithm to transfer to OOD data, we 
divided our dataset into different “splits” that each represent a shift between the 
training and test data: 

• Random: Assign each transmitter location randomly to the training or test split 
(the default condition in many fingerprinting problems) 

• Grid: Divide the area into a .10 × 10 grid of cells, and assign all transmitter 
samples within a cell to ether the training or test split 

• Driving/Pedestrian: Assign samples based on the method of transmitter mobility 
• April/July: Assign samples based on the date of collection 

With these different dataset splits for training and testing, we evaluated CUTL 
on its ability to localize OOD transmitters. These results are shown in Table 3. 
Accuracy on OOD data varied widely. The Grid split had a median accuracy almost 
.3× worse than the Random split. In this case, each grid cell was approximately 
200 m wide, so an error on the order of 100 m shows that localization within the cell 
is largely inaccurate, but the model is predicting a location near the correct cell. 

The Pedestrian and July training sets had over 3000 training samples, but 
the models trained on this data had lower accuracy than their Driving and April 
counterparts which had significantly less training data. These results highlight that 
a large training set is not helpful for localization if it does not accurately represent 
the data encountered at test-time. Overall, the predictions from CUTL were more 
accurate than any other state-of-the-art localization methods. These results show 
that no existing methods generalize well to OOD cases. It’s possible that through 
sophisticated data augmentations, this gap between distributions could be bridged. 

Table 3 The median localization error for OOD test sets, along with the number of samples in 
each train and test set [19] 

Train set Size Test set Size Median error [m] 

Random 3399 Random 828 40.1 

Grid 3536 Grid 691 117.6 

Driving 925 Pedestrian 3302 181.5 

Pedestrian 3391 Driving 836 264.9 

April 811 July 3416 207.4 

July 3416 April 811 335.8
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4 Adversarial Attacks on Crowdsourced Localization 

While crowdsourcing sensor information can provide a higher degree of sensor 
coverage, this benefit comes with costs; the crowdsourcing model presents a new 
avenue of attack for adversarial actors. Since sensors are not controlled by a 
single trusted party, adversaries can exploit the accesibility of the system and 
manipulate data to their advantage. In the context of localization, a malicious 
actor may disrupt the process by injecting false data, or poisoning, through the 
crowdsourcing mechanism. Adversaries can exploit the weakness of ML models to 
out-of-distribution data, though in this case the distribution shift comes from false 
data, rather than realistic changes in the environment. 

In this section, we explore possible adversarial attacks on crowdsourced local-
ization. These range from naive attacks, where adversaries’ limited knowledge and 
capabilities may prevent a more effective attack, to omniscient attacks, where adver-
saries possess complete knowledge of the system architectures, model, and data. 
The latter enables an adversary to test arbitrary attacks and identify vulnerabilities 
to later exploit in a live localization system. 

The envisioned system for transmitter localization relies on users submitting RS 
measurements and associated sensor locations to a central server or fusion center 
which then estimates the transmitter location. In this context, an adversary’s attack 
must come from participation in the crowdsourcing process; we do not address 
network, server, or infrastructure attacks. 

4.1 Naive Attacks 

In the most naive setting, an adversary possesses no information about the trans-
mitter’s location, the localization algorithm, or the RF environment. Their only 
objective is to increase error in the localization system. 

One simple naive attack is to randomly select a location, assign an RSS value to 
a spoofed sensor at this location, and submit this information to the crowdsourcing 
system. The adversary may consider two scenarios for their fake RSS value: a low 
value near the noise floor, or a high value indicating the transmitter is nearby. A 
low RSS close to the true transmitter location could cause error, but a low RSS far 
from the true transmitter would have little impact. Similarly, a high RSS near the 
transmitter could actually increase the localization accuracy, but could also hide the 
true transmitter location if it were a greater distance from the transmitter.
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4.2 Informed Attacks 

The naive setting, while simple to consider, is quite unrealistic. In practice, an 
adversary may possess information about the transmitter location, have some 
understanding of the localization algorithm, or have access to sensor measurements. 
In such cases, they could exploit this knowledge to craft far more effective attacks 
against the system. We call this an informed attack, where an adversary attempts to 
mask or mislead localization of a known transmitter, or more generally to undermine 
the trust or reliability of the system. 

Potential informed attacks are simple to formulate. For example, an adversary 
could report an RSS value that negatively correlates with what is detected at their 
own location. With knowledge of the transmitter location, they could spoof a fake 
sensor with high RSS far from the target. 

While many informed attacks would be quite effective and represent a more 
likely scenario, we focus on naive and omniscient attacks in our case study in 
Sect. 5, since any informed attack would generally be bounded between naive and 
omniscient attacks. 

4.3 Omniscient Attacks 

The omniscient or white-box attack setting is extremely powerful. An adversary 
may have access to all sensor coordinates and RSS values, the transmitter location, 
and information about the specific localization algorithm used. If a non-learning 
technique is used for localization, then an adversary could exactly replicate the 
localization results. If a ML model is used, an adversary may not have access to 
the exact model used for localization, but could train a similar surrogate model to 
perform the same task. Papernot et al. [21] show that on computer vision tasks, 
attacks developed on a surrogate model are often effective against a previously 
unseen model, even if the surrogate model is trained on different data to perform 
a similar task. 

It may be apparent that this omniscient setting is extremely unrealistic. An 
adversary has access to all crowd measurements with the ability to inject an attack 
to the fusion center. This adversary clearly has an outsized influence on localization 
effectiveness. As mentioned previously, the impact of omniscient attacks and our 
ability to defend against them, provides an upper bound on how effective an 
informed attack may be. Omniscient attacks could potentially be deployed offline, 
allowing an adversary to craft strategies to be deployed in a real system as informed 
attacks.
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4.3.1 Worst-Case Attack 

If an adversary has sufficient time to consider many attacks, then a worst-case 
attack could be easily developed by inserting a spoofed sensor at the worst possible 
location which maximizes the localization error. As an example, an adversary could 
test the effectiveness of inserting a high or low RSS value at every pixel in the CNN 
input, and find which attack is the most effective. 

4.3.2 Fast Gradient Sign Method 

A classic technique for adversarial input generation in computer vision is the Fast 
Gradient Sign Method (FGSM) from Goodfellow et al. [10]. This attack uses the 
same backpropagation algorithm used to train neural networks to instead produce 
an attack based on the gradient with respect to the crowdsourced input data X. Let  
. θ be the parameters of our model, X be the input, Q be the localization target, and 
J be the cost model used to train the model using backpropagation. Then FGSM 
produces a perturbation vector . η: 

.η = ϵ · sign (∇XJ (θ,X,Q)) . (2) 

In other words, J is the cost which is minimized while training the model using 
gradient descent. This cost (the localization error) is minimized iteratively by taking 
the gradient with respect to the model parameters . θ , and updating those parameters 
in the opposite direction of the gradient .∇XJ . FGSM uses the same formulation, but 
instead of updating model parameters, we take the sign of the gradient with respect 
to X, producing a perturbation . η with values in .{−ϵ, ϵ} which can be added to X to 
increase the overall error. 

We consider three main types of attacks based of FGSM: 

• Sensor perturbation attacks change existing sensor values by . ±ϵ. 
• Withholding attacks conceal sensor values by removing entries from the crowd. 
• Virtual sensors are spoofed measurements provided to the fusion center. 

These attacks can be combined for more sophisticated attacks; an adversary could 
insert virtual sensors while reducing the RSS of sensors near the transmitter by . ϵ. 

A Word on Adversarial Control For any attack, whether naive, informed, or 
omniscient, an adversary with control of a significant portion of the crowd could 
cause an arbitrary localization error. As part of the threat scenario, we must assume 
some limit to the percentage of the crowd controlled by the adversary, but we do not 
explore how this limit could be enforced in realistic settings.
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4.4 Defending Against Adversarial Attacks 

More important than understanding the potential threats that an adversary poses, 
we consider potential defences against adversarial attacks. In general there are two 
main objectives that a robust localization system must consider when crowdsourcing 
measurements: 

1. Identifying and removing adversarial sensors 
2. Accurate localization in spite of adversarial attacks 

Obviously, these objectives are tightly intertwined: adversarial sensors cannot be 
identified without recognizing an attack, and accurate localization is easier if all 
adversarial inputs have been removed. 

4.4.1 Sensor Identification and Removal 

Excluding adversarial sensors is a complex and challenging problem, but there are 
several approaches to be considered: 

• Statistical Analysis: Apply statistical techniques to identify outliers in the sensor 
data. If RSS values are inconsistent with normal behavior, this could indicate 
adversarial interference. 

• Anomaly Detection: Machine learning models can be trained specifically to 
classify inputs as normal or adversarial. If specific attack methods are likely to be 
encountered, adversarial samples can be generated and used to train a classifier 
which detects attacks, though assuming a particular set of attacks could be a 
pitfall that provides a false sense of system security. 

• Physics-based Detection: If certain properties of RF propagation in the environ-
ment are known, then adversarial sensors could be detected by observing the 
variation of each point from the expected conditions. 

• Crowd Validation: If sensor data from trusted sources is being augmented with 
crowdsourced data, then the correlation between trusted data and crowdsourced 
measurements can be found, potentially identifying bad actors. 

Localization Specific Outlier Removal Whatever removal technique is used, there 
is some risk of discarding non-adversarial measurements. One technique for outlier 
exclusion specific to localization relies on evaluating the amount of change in a 
localization estimate when a single sensor value is withheld. Given a localization 
model . hθ and a set of sensors and measurements S, the predicted target location 
is .Q̂ = hθ (S). Then, for each sensor input . si , the predicted location without . si is 
calculated, .Q̂i = hθ (S\{si}). The sensor . si that results in the largest difference . |Q̂−
Q̂i | is considered to be an adversarial input, if .|Q̂ − Q̂i | exceeds some threshold . γ . 

This technique can be applied for any localization algorithm, though it can also 
be modified for different models. For example, an image-to-image prediction that
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results in a heat map of probable transmitter locations could consider the difference 
between heat maps rather than the difference in predicted coordinates. 

This technique’s efficacy may be largely dependent on the sensor density and 
coverage of a region. In a sparsely covered area, localization accuracy is largely 
dependent on the measurement closest to the target, so this method of outlier 
exclusion greatly decreases overall accuracy [20]. 

4.4.2 Adversarial Training for Accurate Localization 

It’s important to note that no single technique can guarantee detection and removal 
of adversarial inputs. In view of this, it is crucial to develop localization techniques 
that are robust to some amount of adversarial perturbation. 

As is common in computer vision [10, 21], adversarial training can provide a 
great measure of robustness for ML-based localization. During model training, a set 
of known attacks are randomly applied to the input data, with the goal of teaching 
the model to localize targets in spite of corrupted data. This can be done with both 
naive attacks, worst-case attacks, or attacks generated using FGSM. 

Adversarial training does come with a few drawbacks. The most obvious for 
large, complex models is the increased computational complexity. In our case, most 
proposed localization techniques are relatively simple compared to the 50–100 layer 
CNNs used in many computer vision contexts, so this is less of an issue in our 
localization context. Our CNN localization models were typically trained in less 
than 1 hour on a consumer-grade GPU, so while applying adversarial training may 
increase the training time by 2–4. ×, this is not prohibitive. 

A more critical concern for adversarial training is if the attacks applied do not 
resemble the actual attacks that an adversary may employ. In this case, a model 
may be assumed to be robust to adversarial attacks but in practice could be equally 
vulnerable as a baseline model. The defended model may actually become more 
vulnerable to attacks not used as part of its training process [33]. 

In practice, adversarial attacks may be less effective compared to similar attacks 
on computer vision tasks. In the context of localization, a limited crowd provides a 
much smaller attack surface. For example, an adversary attacking an image-based 
CNN localization model could not perturb every input pixel if their control is limited 
to a small portion of the sensor crowd. This smaller attack surface may be more 
robust overall [14]. 

5 A Case Study on Attacking Localization 

We now present a case study exploring the effects of adversarial attacks and defenses 
on a real-world localization dataset. We use our publicly available dataset described 
in Sect. 3.4.1 [17] with a random split of the data into training and test sets. These 
results are based on a previous workshop paper [20].
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We deployed the CUTL image-to-image model for localization [19], with a meter 
scale of 60 m per pixel chosen through experimental validation. CUTL achieves 
a median accuracy of 38 m. This may seem like a high error compared to other 
techniques which claim sub-meter accuracy, but achieving sub-meter accuracy in 
[18] required approximately .4000× the sensor density. Claims of high localization 
accuracy should always be viewed in the context of sensor density and distribution. 

Once our model was trained, we then applied the adversarial attacks and defenses 
described in Sect. 4. Ultimately, we show adversarial training to be extremely 
effective at defending against the attacks used during the training process. Naive 
attacks are largely ineffective after adversarial training, and the FGSM-based 
omniscient attacks are significantly less effective with adversarial training. The 
worst case attack, by nature of it being the worst case, remains somewhat effective 
on our model after adversarial training. 

5.1 Attack Scenario 

The CUTL model we deploy is a UNet image-to-image localization model using 
learned calibration for different categories of sensors. We assume that an adversary 
is using spoofed sensors which they are labeling as mobile crowdsourced devices. 
As was mentioned in Sect. 3.4, the learned calibration reduced the importance of the 
mobile sensors, so our attack does have a slight disadvantage in this sense. 

As single-sensor attacks, we applied a naive attack with random RSS and random 
coordinates, and an omniscient worst case attack where the adversary queries the 
localization model many times to determine which is the most impactful pixel for 
attacking. For the FGSM attacks, since the image-to-image localization model is 
not differentiable with respect to the localization error, we used a surrogate model 
trained on identical data to generate attacks using the FGSM technique. These 
attacks were then evaluated on the original image-to-image model, which we refer 
to as the baseline model. 

5.1.1 Defending Our Localization Model 

We applied adversarial training to defend against adversarial attacks. The CUTL 
localization model was retrained on the same training data while one of the 
following attacks was randomly applied to the training samples for each training 
batch: 

1. Top-N%: The top .N% of sensors with the largest magnitude gradient are 
perturbed by a random constant . ϵ, where N ranges from 10–50%. 

2. Drop-N%: The top .N% of sensors with the largest gradient are withheld, where 
N ranges from 10–50%.
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3. Hi-Lo: Spoofed sensors with high or low values are inserted. The M sensors 
with the largest positive gradient are set to an RSS of . ϵ and the N sensors with 
the largest negative gradient are set to the noise floor. 

4. Top-N%+Hi-Lo: Apply the TopN% attack to imitate the sensors an adversary 
controls, then apply Hi-Lo to insert fake sensors. 

We also considered methods of outlier exclusion described in the last part of 
Sect. 4.4.1. This involves removing sensors based on how much of a change in 
prediction results from excluding a particular sensor. We found that with such a 
low sensor density, excluding sensors resulted in significant drops in accuracy. This 
is unsurprising, considering that with a low sensor density accurate localization may 
be largely dependent on a single sensor. 

5.2 Naive Random Attack 

We considered a single spoofed sensor with random coordinates and a random RSS 
between the 10th and 90th percentiles. As might be expected, this was a largely 
ineffective attack. Of 600 random attacks on each sample, only 6.4% of naive attacks 
were successful at increasing the localization error by . 2×. When adversarial training 
was applied, this dropped to only 3.3% of attacks. 

Although the naive attack is limited in its effectiveness, this does seem to 
be partially determined by the particular sensor configuration. With a test set of 
828 samples, we repeated naive attacks 600 times on each test sample. For some 
samples, none of the random attacks had any impact on localization predictions. 
The success rate for each sample varied widely from 0–65% success in doubling the 
error. This variation implies that certain configurations are far more vulnerable to 
attacks. 

5.3 FGSM Attacks 

We now explore FGSM-based attacks as a slightly constrained attack, where the 
adversary has a surrogate model to query but does not have time to generate many 
attacks in a worst-case scenario. 

We applied the attacks described in Sect. 5.1.1, evaluating against both the 
baseline model and the adversarial trained model, denoted as AdvTr in figures. We 
evaluated attacks on each of the 828 samples in the test set. The baseline model 
had a median error of 38 m and the adversarial trained model had a median error of 
36 m. 

Top-N% In Fig. 5 we show the success rate of the Top-N% attack. Here we add 
. ϵ to the top 20, 50, and 100% of sensors, ordered by the magnitude of their pixel 
gradient. As mentioned before, we consider . ϵ between 0 and 0.5.
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Fig. 5 The median error caused by Top-N% attacks, with and without adversarial training 
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Fig. 6 The median error caused by Drop-N% and Top-N% attacks, with and without adversarial 
training 

For the Top-100% attack, adversarial training does not have a large impact on 
median error, but the improvement is drastic for the attacks with fewer adversarial 
sensors. The average improvement for the restricted case of 10–50% adversarial 
control increased with . ϵ, with an average improvement of 65% for .ϵ = 0.5. 

Drop-N% The Drop-N% attacks withhold a percentage of the highest gradient 
sensors, so it is independent of any constant . ϵ. In general, this attack was 
approximately as effective as a Top-N% attack with .ϵ = 0.2. These two attacks are 
shown in Fig. 6. They are similar in their effectiveness and the impact of adversarial 
training. This finding was somewhat surprising, since the attacks are opposites; one 
increases the RSS of key sensors, and the other withholds information from key 
sensors. 

As might be expected, the Drop-N% attack does become significantly more 
effective as the number of sensors withheld by the adversary increases. With 50% of 
sensors withheld, the median accuracy after adversarial training is almost double of 
the Top-N% attack. This is likely because the Drop-N% attack completely removes 
any sensor information, while the Top-N% only introduces a bounded amount of 
noise to the actual sensor value.
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Fig. 7 The median error caused by Hi-Lo attacks (.ϵ = 0.5), with and without adversarial training 

Hi-Lo The Hi-Lo attacks, unlike the previous attacks, do not require the adversary 
to control a large percentage of sensors. Instead, we inject low-RSS and high-RSS 
fake sensors into the sensor vector S, with values at the noise floor and .ϵ = 0.5, near 
the 95th percentile. In Fig. 7 we show results from adding 1 and 5 of each type of 
sensor. For the baseline model, the low-RSS sensors are particularly effective, since 
the Lo5 attacks have a significantly higher median error than the Lo1 attacks. The 
effectiveness of low-RSS sensors compared to high-RSS sensors may seem counter-
intuitive. These fake sensors are almost identical to the 0-valued pixels that make 
up the majority of the image. Although it is difficult to determine exactly why these 
small negative values are impactful in this model, in neural networks, we assume 
that these low-valued pixels pixels decrease the likelihood that the transmitter is 
near that location in a way that the 0-valued, non-sensor pixels do not. 

The Hi-Lo attack can also include sensors controlled by an adversary, as shown 
by the Top1 and Drop1 variants shown in Fig. 7, where a single sensor was either 
perturbed by . ϵ or withheld by the adversary. The Top1 attack was more effective 
than the Drop1 variant. All these attacks were entirely neutralized by adversarial 
training. 

5.4 Worst Cast Attack 

We apply the worst case attack, where each input pixel is set to values of the 10th and 
90th percentile of RSS values, the localization error is calculated with this spoofed 
sensor value, and the worst possible case is used as the attack for that sample. 

As might be expected, the worst case attack is extremely effective on almost 
every test sample, even though it only utilized a single sensor. We assume the 
adversary has an identical localization model which they repeatedly query to 
determine the worst possible attack using a single spoofed sensor. Over 95% of 
attacks doubled the localization error, though adversarial training did decrease this 
to 70% of attacks.
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Fig. 8 Violin plots showing the shift in error distributions for localization with no attack, worst 
case attack, and worst case on a model with adversarial training. The median of each distribution 
is also marked 

Table 4 Error statistics for adversarial attacks with and without adversarial training 

Baseline error Adv. training error 

Attack Median [m] Mean [m] 2× Increase Median [m] Mean [m] 2× Increase 

No attack 38.0 67.5 – 35.7 66.2 – 

Naive 39.3 78.6 6.4% 36.3 69.7 3.3% 

Top-10%
ϵ = 0.4 

242.2 83.2 43.1% 43.7 114.6 19.2% 

Drop-10% 52.0 116.6 23.4% 41.3 90.7 14.4% 

Top1+Hi5-Lo5
ϵ = 0.4 

83.4 311.2 49.0% 38.6 90.9 12.7% 

Worst case 965.2 983.2 95.0% 126.1 328.2 69.6% 

Fortunately, All hope is not lost for defending against the worst case attack. 
Figure 8 shows the error distributions of the worst case attacks, with and without 
adversarial training. The worst case attack increases the median error from 38 to 
965 m, a .25× increase, but adversarial training drops the median error to 126 m, only 
a . 3× increase. While this is still a significant amount of localization error, the major 
shift in the distribution shows the huge impact that adversarial training can have. It’s 
also important to remember that the adversarial training did not include worst case 
attacks, only FGSM-based attacks, so it’s possible that specifically training on the 
worst case attack could further improve resiliency. 

5.5 Discussion 

The attacks executed in this work were effective at producing high error in an 
otherwise reliable localization system. Table 4 shows statistics for the attacks 
deployed on our localization model. Though naive and FGSM attacks were effec-
tively neutralized by adversarial training, the worst case attack remains extremely
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effective, increasing median error on the defended model by .3.5×. If we compare 
adversarial attacks to the OOD data evaluation from Sect. 3.4.1, the impact of these 
attacks seems less significant. The median error in the worst case attack after 
adversarial training (126 m) is similar to the error in the OOD Grid case (118 m) 
and significantly less than the other train-test splits, ranging from 182 m to 336 m. In 
this case, the observable differences in data impact accuracy more than adversarial 
attacks. 

The viability of worst case attacks is also questionable. In our attack we applied 
the worst case attack to the exact model used for localization, something an 
adversary would not reasonably have access to. It is possible that exploring worst 
case attacks could reveal a simpler strategy that would not require an omniscient 
setting. It remains to be shown if an adversary could use the set of worst case attacks 
to develop a more efficient method of generating similarly effective attacks without 
model access or full crowd information. 

One of our chief objectives was to bound the efficacy of informed attacks on the 
lower end by naive attacks, and by omniscient attacks on the upper end. It seems 
that though the worst case attack increases error significantly, it is also the least 
realistic attack. With adversarial training, the median error is still less than 10% of 
the width of our region of interest, which could still be useful information to narrow 
down the search space. Compared to the OOD experiments, the worst case attack is 
similar in localization error. Additionally, the worst case attack may not be effective 
in practice. If we consider techniques for removing adversarial samples, it seems 
likely that single, worst case attacks would be easily identified and removed using 
statistical techniques or a classifier model. 

An expectation we had at the outset of this work was that adversarial training 
would improve localization accuracy. We assumed that providing robustness to 
noise injection attacks would help improve robustness to existing noise in the 
training and test set. There was a modest improvement from adversarial training 
of 1.3 m on average. Research from computer vision [2, 16, 32] suggests that 
robustness to underlying noise cannot be provided by augmentations such as 
adversarial training. This appears to hold true for our localization setting. 

Generalization to Practical Localization Our dataset, while extensive, does not 
reflect all localization scenarios. For example, with such a low sensor density, an 
adversary controlling 1 or 2 sensors represents 10–20% of all sensors. With a higher 
sensor density, it is possible that single sensor worst case attacks would be largely 
ineffective, since a single fake sensor would have a more limited influence. 

6 Location Privacy Concerns 

As seen earlier in the chapter, crowdsourced users or devices participating in 
distributed sensing to assist with localization typically report their location and their 
radio measurements to a fusion center (e.g., [11]). They may or may not explicitly
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report their identity. In many cases it is possible to infer the identity of the user 
based on its location. Therefore, the location privacy of the participants is a serious 
concern [8, 12, 37]. Users can be linked to their locations, and multiple pieces 
of such information over a period of time can be correlated to profile users for 
unsolicited targeted advertisements or price discrimination [4]. Even worse, a user’s 
habits, personal and private preferences, religious beliefs, and political affiliations, 
can be inferred from the user’s whereabouts. Therefore, users who are willing to 
participate in the crowdsourcing system for societal good or some incentives can be 
uncomfortable and choose to not participate. 

One traditional approach to preserving location privacy is to add noise to the 
location with the hope that the measured data would still be useful and would not 
severely reduce the localization accuracy [9]. A better approach called the adjusted 
measurement approach, proposed by Singh et al. [28], generates pseudolocations 
and report the pseudolocations along with adjusted measurements, achieved through 
appropriate propagation models, as if the measurements were made at the pseu-
dolocations. This method has been shown to work better in terms of reducing the 
localization error in comparison to the traditional methods of only adding noise to 
the location [28]. 

Location privacy is not the primary focus of this chapter and hence we do not 
discuss that in greater details. This section provides a high level view of the location 
privacy concerns as well as a novel solution towards mitigating these concerns. 

7 Looking Forward 

The rapid evolution of localization techniques has paved the way for the practical 
implementation of localization systems using crowdsourcing, but there are still 
crucial areas of development that demand attention before such a system could 
be deployed. Specifically, models must become more robust to adversarial attacks 
and to out-of-distribution data from environmental and hardware changes. Here we 
consider a few key challenges for researchers and practitioners to consider in the 
future. 

Adversarial Attacks and Training While our case study provided valuable insights 
into the efficacy of attacks and limiting their impact, it is essential to explore 
adversarial attacks in a variety of settings, such as with a greater degree of 
sensor mobility, higher sensor density, different environments, and with varying 
crowdsourcing models and mechanisms. 

We have shown that adversarial training can provide robustness to certain types 
of attacks, but it is vital to continue exploring novel adversarial attacks that may 
expose specific weaknesses of localization models. 

Improving Generalization While adversarial training is one method to make local-
ization models more robust, it fails to address the chief issue of poor localization on 
out-of-distribution data. One of the primary challenges in improving generalization
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is the lack of diverse datasets for crowdsourced localization. To our knowledge there 
are only two extensive outdoor datasets for localization [1, 17], both of which have a 
very low sensor density, and neither of which use true crowdsourcing. Complex ray-
tracing models may be accurate enough to produce simulated “ground truth” data 
for training localization models, but the degree to which these models represent RF 
propagation in a real world environment is not well studied. 

Localization with Directional Transmitters All the localization methods discussed 
in this work have assumed an omnidirectional antenna on both transmitter and 
receiver. Although CUTL shows that CNN localization is effective even when some 
sensors have an irregular receiver pattern [19], there are significant challenges to 
overcome if transmitters use beamforming to focus signal strength in a particular 
direction. This would introduce transmitter direction as an additional variable in the 
learning problem, and would drastically reduce the number of sensors which would 
receive the signal. 

8 Conclusion 

The utilization of crowdsourcing for localization, especially localization of spec-
trum offenders, has opened up new avenues for practical implementation and 
improved accuracy. This chapter explored various localization techniques, including 
recent ML-based approaches. We also provided a case study which demonstrated 
the vulnerability of localization systems to adversarial attacks, as well as showing 
adversarial training to be a reasonably successful and convenient defense mecha-
nism. 

Crowdsourcing presents a promising approach to localization, but it requires 
addressing privacy concerns and improving resilience against adversarial attacks. 
Researchers and practitioners must continue to refine localization models, advance 
defense strategies, and expand datasets in order to achieve robust and reliable 
localization systems. 
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Adversarial Online Reinforcement 
Learning Under Limited Defender 
Resources 

Ming Shi, Yingbin Liang, and Ness B. Shroff 

1 Introduction 

Reinforcement learning (RL) is a powerful paradigm, where an agent interacts with 
an environment with the aim of finding a policy that optimizes the cumulative 
reward, e.g., throughput or average delay in a communication system. Recently, 
adversarial RL has become popular because of its ability to capture scenarios 
where the reward and/or the dynamics of the environment (i.e., the underlying 
transition probability distribution) change over time, possibly in an adversarial 
manner. For example, in communication networks where calls or flows arrive in 
a time-varying manner, the wireless environment (e.g., the signal to interference 
ratio or transmission success rate) may be non-stationary due to user mobility. 
Malicious users could also affect the channel conditions by injecting interference in 
an adversarial manner. Clearly, in order to perform well in such systems, the agent 
needs to change the policy accordingly over time, e.g., which network access point 
to send the packets to, or which base-stations in a cellular system to power down to 
save energy costs. However, the agent (who becomes the defender if system changes 
are adversarial) may not be able to afford frequent policy changes especially when 
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the reward and/or the dynamics of the environment change rapidly. For example, if 
the agent is an edge device, it may have energy limitations, and changing policies 
could incur a significant energy cost. To that end, we study adversarial RL that 
incorporates both switching costs and rewards as performance metrics. 

In this chapter, we will first give an overview of adversarial RL without switching 
costs as the baseline, where the defender/agent is assumed to have unlimited power 
to change her policies all the time. We will then describe the state-of-the-art results 
for the adversarial bandit learning with switching costs, which is a special case of 
adversarial RL. After that, we will focus on our recent development on adversarial 
RL with switching costs, where switching-reduced algorithms are provided to 
achieve near-optimal performance (in terms of regret), together with important 
lower bounds that could guide future work. Finally, we will discuss open issues 
and future directions on adversarial online RL under limited defender resources. 

2 An Overview of Adversarial RL Without Switching Costs 

Reinforcement learning (RL) has arisen as a compelling paradigm for modeling 
machine learning applications with sequential decision making. In such a problem, 
an online agent interacts with the environment sequentially over Markov decision 
processes (MDPs) with the aim to achieve a low cumulative loss or a high cumu-
lative reward. Various algorithms have been developed for RL problems and have 
been shown to achieve polynomial sample efficiency in [1–5], etc. However, these 
studies have mainly focused on static/stochastic RL, where the loss distribution is 
assumed to be fixed during the learning process. Thus, practical scenarios where the 
loss distribution could be non-stationary or even adversarial are not characterized or 
considered. For example, in communication networks where calls or flows arrive in 
a time-varying manner, the wireless environment (e.g., the signal to interference 
ratio or transmission success rate) may be non-stationary due to user mobility. 
Malicious users could also affect the channel conditions by injecting interference 
in an adversarial manner. 

Adversarial RL better models scenarios where the loss distributions and/or the 
transition functions of MDPs could change over time. In adversarial RL, the online 
agent interacts with the Markov environment in K episodes (Fig. 1). There are H 
steps in each episode. At each layer .h = 0, ..., .H − 1 of an episode .k = 1, ..., K , 
after observing the current sate . s

πk

k,h, the defender chooses an action . a
πk

k,h = πk(s
πk

k,h)

Fig. 1 Adversarial reinforcement learning problem
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according to the current policy . πk . Then, the agent incurs a loss .lk(s
πk

k,h, a
πk

k,h). 
Importantly, the loss function .lk(·, ·) could change adversarially or non-stationarily 
across episodes. Finally, the next state .sπk

k,h+1 ∈ Sh+1 is drawn according to 
the transition probability .P(·|sπk

k,h, a
πk

k,h). The final goal is to achieve a low sub-
linear regret, which is the worst-case difference between the expected total cost 
of algorithm .π = {πk}Kk=1 and the total cost of the optimal policy . π∗, i.e., 

. Rπ(T ) ≜ sup
l1:K

{
E

[
K∑

k=1

H−1∑
h=0

lk(s
πk

k,h, a
πk

k,h) −
K∑

k=1

H−1∑
h=0

lk(s
π∗
k,h, a

π∗
k,h)

∣∣∣∣∣π, π∗, P
]}

,

(1) 

where .π∗ = argminπ0
E

[∑K
k=1
∑H−1

h=0 lk(s
π0
k,h, a

π0
k,h)

∣∣∣π0, P
]
. 

Recent work has proposed many algorithms with sub-linear regret for different 
settings of adversarial RL. For example, in tabular MDP with a known transition 
function, [6] proposed an RL algorithm that attains an .Õ(

√
HSAK) regret, where 

S and A are the number of states and actions. In the case with an unknown 

transition function, [7] and [8] obtained an .Õ

(
HS

√
AK ln KSA

δ

)
regret with 

probability .1 − δ. These studies assume that the state spaces of layers in an 
episode are non-overlapping. Moreover, [9] studied the case with full-information 
feedback. Adversarial linear MDP has also been studied recently, e.g., in [10, 11]. 
In addition, [12, 13] and [14] studied the case when both the loss distribution 
and transition function change arbitrarily. More studies on various adversarial RL 
settings have been done by Rosenberg and Mansour [15], Lee et al. [16], Zhao et al. 
[17], Jin et al. [18], and He et al. [19], etc. However, they all allow the policies to be 
changed for free at any time, which will result in poor performance when the policy 
switches should be bounded, e.g., in the case with limited defender resources. 

3 Adversarial Bandit Learning With Switching Costs 

In various practical scenarios, an important performance metric is the switching 
cost of executing RL algorithms. For example, the online defenders cannot change 
their policies for free, especially in networking applications where the devices may 
have limited processing power. Further, in recommendation systems, each change 
of the recommendation involves the processing of a huge amount of data and 
additional computational costs [20]. Similarly, in healthcare, each change of the 
medical treatment requires substantial human efforts and time-consuming tests and 
trials [21]. Such switching costs also need to be considered in many other areas, 
e.g., robotics applications [22], education software [23], computer networking [24], 
and database optimization [25].
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Switching costs have already received considerable attention in various online 
problems. For example, online convex optimization with switching costs has been 
studied in [26–30], etc. Convex body chasing with switching costs has been studied 
in [31–33], etc. Switching costs have also been studied in metrical task systems [34], 
online set covering [35], k-server problem [36], online control [37–39], etc. 

3.1 Problem Formulation 

A more relevant line of research for adversarial RL with switching costs is 
along adversarial bandit learning with switching costs [40–43]. Adversarial bandit 
learning is a special case of adversarial RL when .H = S = 1, i.e., when there is 
only one step in each episode and only one state. Specifically, in adversarial bandit 
learning with switching costs, there are A arms, .{1, 2, ..., A}. At each time t , the  
online agent chooses .M = 1 arm according to algorithm . π , denoted by .aπ(t), from 
these A arms. This chosen arm will then incur a loss .lt (aπ (t)). The loss function 
.lt (·) could change arbitrarily or non-stationarily across times. Additionally, if the 
arm .aπ(t) chosen at time t is different from the arm .aπ(t − 1) chosen at time .t − 1, 
there is a switching cost . β. Thus, the total cost for T time-slots is 

.Cost(1 : T ) ≜
T∑

t=1

lt (a
π (t)) +

T −1∑
t=1

β · 1{aπ (t+1) /=aπ (t)}. (2) 

For the optimal algorithm . π∗, she knows the future losses in advance, and hence 
can choose only one arm throughout the time-horizon. The cost of . π∗ is then given 
by .Costπ

∗
(1 : T ) = min

a∈{1,2,...,A}
∑T

t=1 lt (a) + β, where there is only one switching 

cost . β at the beginning of the time-horizon. The goal is to design an online learning 
algorithm with a low sub-linear regret, where the regret is the worst-case difference 
between the expected total cost of algorithm . π and the total cost of the optimal 
offline solution, i.e., 

.Rπ(T ) ≜ sup
l1:T

{
E

[
Costπ (1 : T )

]− Costπ
∗
(1 : T )

∣∣∣π} , (3) 

3.2 Algorithm and Regret 

It has been shown that the optimal regret in adversarial bandit learning with 
switching costs is .Θ(T 2/3) [41, 43]. The idea is to divide the time horizon into 
.Θ(T 2/3) episodes, and pull one single Exp3-arm in an episode. By doing so, the 
total switching cost is trivially .Θ(T 2/3). Meanwhile, the loss regret in an episode is 
.Θ(η · (T 1/3)2), which is proportional to the loss variance in an episode. The final
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Algorithm 1 Episodic Exponential-Weight for Exploration and Exploitation 
(EpExp3) 

Parameters: Choose η = Θ(T −1/3) and τ = Θ(T 1/3). 
Initialization: wEpExp3 

a [1] =  1 and  pEpExp3 
a [1] =  1 

K , for  all  a ∈ {1, ..., A}. 
for u = 1 : ⌈ T 

τ

⌉
(The u-th episode starts from tu = (u − 1)τ + 1 to  tu + τ − 1.) do 

Step 1: At the beginning of the first time-slot, pick an arm for the entire episode: aEpExp3[1] 
from all arms a ∈ {1, 2, ..., A} according to the probability pEpExp3 

a [1]. 
for t = tu : tu + τ − 1 do 

Pull the arm aEpExp3[u] and use it as the active arm. 
end for 
Step 4: At the end of the last time-slot of the u-th episode, compute the losses for all arms 
a ∈ {1, 2, ..., A} according to (4). Then, update the weights wEpExp3 

a [u + 1] and probabilities 
p
EpExp3 
a [u + 1] according to (5) and  (6), respectively. 

end for 

.Θ(T 2/3) regret is then achieved by taking the sum of all these costs and tuning the 
parameter .η = Θ(T −2/3). 

We call the algorithm Episodic Exponential-Weight for Exploration and 
Exploitation (EpExp3). Please see Algorithm 1 for details. Specifically, 
EpExp3 divides the time horizon into .

⌈
T
τ

⌉ = Θ(T 2/3) episodes. At the beginning 
of each episode u, we choose an arm and use it as the active arm to incur the loss 
for the whole episode. At the end of the episode u, EpExp3 estimates the losses for 
all arms as follows, 

.L̃
EpExp3
a [u] =

{
La [u]

p
EpExp3
a [u] , if a = aEpExp3[u],
0, if a /= aEpExp3[u], (4) 

where .La[u] ≜
∑tu+τ−1

t=tu
lt (a), and .aEpExp3[u] is the active arm used in the u-

th episode. Next, using the computed losses, EpExp3 updates the weights and 
probabilities for all arms .a ∈ {1, ..., A} as follows, 

.w
EpExp3
a [u + 1] = w

EpExp3
a [u] · e−ηL̃

EpExp3
k [u], . (5) 

p
EpExp3 
a [u + 1] = w

EpExp3 
a [u + 1]∑A 

a=1 w
EpExp3 
a [u + 1] 

, (6) 

where . η is a tunable parameter (Fig. 2). 
It is worth noting that, while the optimal regret when .M = 1 is .Θ(T 2/3), [43] 

shows that a .O(
√

T ) regret is achievable when .M > 1. This means that when a little 
more resource is provided to the defender, the regret can be significantly reduced for 
adversarial bandit learning with switching costs.
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Fig. 2 The EpExp3 algorithm for adversarial bandit learning with switching costs 

4 Adversarial RL With Switching Costs 

In this section, we investigate how to develop a provably efficient algorithm for an 
online defender under adversarial RL with switching costs [44]. First, we provide 
the formulation for this problem. Then, we provide a lower bound of the regret 
and an interesting tradeoff between the loss regret and switching costs. Finally, we 
provide two switching-reduced algorithms with regrets that match the lower bound 
when the transition function is known, and match the lower bound within a small 
factor when the transition function is unknown. 

4.1 Problem Formulation 

We consider adversarial reinforcement learning (RL) with switching costs in 
episodic Markov decision processes (MDPs). Suppose there are T episodes, each 
of which consists of H layers. We use . Sh to denote the state space of layer h. 
For ease of elaboration, we assume that the H layers are non-intersecting [6–8], 
i.e., .Sh' ∩ Sh'' = φ for any .h' /= h''; .S0 = {s0} is a singleton; and each episode 
ends at state .SH = {sH }. Thus, the entire state space is .S = ∪H

h=0Sh with size 

.S = ∑H
h=0 Sh, where . Sh denotes the size of . Sh. Moreover, we use . A to denote the 

action space with size A. Then, theMDP is defined by a tuple .
(
S,A, P , {lt }Tt=1 ,H

)
, 

where P is the transition function with .Ph : Sh+1 ×Sh ×A→ [0, 1] denoting the 
transition probability measure at layer h, and .lt : S × A → [0, 1] represents the 
loss function for episode t . 

The online defender interacts with the Markov environment episode-by-episode 
as follows. At the beginning of each episode .t = 1, ..., T , the online defender 
starts from state . s0 and follows an algorithm that (possibly randomly) chooses a 
deterministic policy .πt : S → A. Next, at each layer .h = 0, ..., .H − 1, after  
observing the current sate . st,h, the defender chooses an action .at,h = πt (st,h). Then, 
the defender incurs a loss .lt (st,h, at,h). Finally, the next state .st,h+1 ∈ Sh+1 is drawn 
according to the transition probability .P(·|st,h, at,h). (For simplicity, we drop the 
index h of . Ph in this chapter when it is clear from the context.) These steps repeat 
until the defender arrives at the last state . sH . At the end of episode t , only the losses 
of visited state-action pairs in the episode are observed by the defender, whereas the
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losses of non-visited state-action pairs are unknown. As in [6–8, 10], this is called 
“bandit feedback”, which is more practical than full-information feedback [9] that 
assumes the losses of all state-action pairs (no matter visited or not) are known for 
free. 

Adversarial Losses for the Online Defender Different from static RL that 
assumes the loss distribution is fixed for all episodes, in the adversarial setting we 
consider here, we do not need any assumption on the underlying loss distribution. 
That is, the loss function . lt could change arbitrarily across episodes. 

Switching Costs for the Online Defender The switching cost refers to the cost 
needed for changing the policy . πt . For example, if the agent is an edge device, it 
may have energy limitations, and changing policies could incur a significant energy 
cost. It is equal to .β ·1{πt+1 /=πt }, where .β > 0 is the switching-cost coefficient and is 
independent of T , and . 1E is an indicator function (i.e., .1E = 1 if the event . E occurs, 
and .1E = 0 otherwise). 

Therefore, the total cost of executing an RL algorithm . π over T episodes is given 
by 

.Costπ (1 : T ) ≜ E

[
T∑

t=1

H−1∑
h=0

lt (s
π
t,h, a

π
t,h) +

T −1∑
t=1

β · 1{πt+1 /=πt }
∣∣∣π, P

]
, (7) 

where the expectation is taken with respect to the randomness of the state-action 
pairs .(sπ

t,h, a
π
t,h) visited by . π , and the possible randomness of changing the policy . πt . 

Next, we introduce a concept called “occupancy measure” [6, 7]. Specifically, the 
occupancy measure .q

π,P
t (s, a) = Pr[sπ

t,h = s, aπ
t,h = a|π, P ] ≥ 0 is the probability 

of visiting the state-action pair .(s, a) by the algorithm . π at layer h of episode t under 
the transition function P . In addition (with slight abuse of notation), the occupancy 
measure .qπ,P

t (s', s, a) = Pr[sπ
t,h+1 = s', sπ

t,h = s, aπ
t,h = a|π, P ] ≥ 0 is the 

probability of visiting the state-action triple .(s', s, a) by the algorithm . π at layers h 
and .h + 1 of episode t under the transition function P . In order to be feasible, the 
occupancy measures need to satisfy some conditions at layer h of episode t . First, 
according to probability theory, they need to satisfy the conditions that, 

. q
π,P
t (s, a) =

∑
s'∈Sh+1

q
π,P
t (s', s, a), for all (s, a) ∈ Sh ×A,

∑
s∈Sh

∑
a∈A

q
π,P
t (s, a) = 1. (8) 

Second, since the probability of transferring to a state s from the previous layer 
.h − 1 must be equal to the probability of transferring from this state s to the next 
layer .h + 1, we have
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.

∑
s'∈Sh−1

∑
a∈A

q
π,P
t (s, s', a) =

∑
s'∈Sh+1

∑
a∈A

q
π,P
t (s', s, a), for all s ∈ Sh. (9) 

Third, the occupancy measure should generate the true transition function P , i.e., 

.
q

π,P
t (s', s, a)∑

b∈A q
π,P
t (s', s, b)

= Ph(s
'|s, a), for all (s', s, a) ∈ Sh+1 × Sh ×A. (10) 

We use .C(P ) to denote the set of all occupancy measures that satisfy conditions (8)– 
(10). Moreover, at the beginning of episode t , the algorithm . π associated with the 
occupancy measure .qπ,P

t chooses a deterministic policy . πt by assigning an action 
.a ∈ A to each state .s ∈ S according to the probability 

.Pr[a|s] = q
π,P
t (s, a)∑

b∈A q
π,P
t (s, b)

. (11) 

Then, it is not hard to show that the expected total loss, i.e., the first term in (7), 

can be expressed as .lossπ (1 : T ) ≜ E

[∑T
t=1〈qπ,P

t , lt 〉
∣∣∣π, P

]
. Finally, the regret 

of an RL algorithm . π is defined to be the sum of the loss regret .Rπ
loss(T ) and the 

switching costs of as follows: 

. Rπ(T ) ≜ max
q∈C(P )

E

[
T∑

t=1

〈qπ,P
t − q, lt 〉

∣∣∣∣∣π, P

]
︸ ︷︷ ︸

loss regret: Rπ
loss(T )

+E

[
T −1∑
t=1

β · 1{πt+1 /=πt }
∣∣∣π, P

]
︸ ︷︷ ︸

switching costs

.

(12) 

Therefore, the goal is to design RL algorithms that achieve as low regret as 
possible against any possible sequence of loss functions .{lt }Tt=1 and state transition 
function P . 

4.2 A Lower Bound 

In this subsection, we will develop a lower bound on the regret for adversarial RL 
with switching costs. Such a lower bound will quantify how difficult it is for the 
online defender to control the regret with switching costs under adversarial RL. 
In Theorem 1 below, we provide this lower bound, followed by the proof of it. In 
Sects. 4.3 and 4.4, we will provide two near-optimal RL algorithms to achieve this 
lower bound. 

Theorem 1 For adversarial RL with switching costs and .T ≥ max {6H 2SA, β}, 
the regret of any RL algorithm . π can be lower-bounded as follows,
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.Rπ(T ) ≥ Ω̃
(
β1/3 (HSA)1/3 T 2/3

)
. (13) 

Theorem 1 shows that in adversarial RL with switching costs, the dependency on 
T of the best achievable regret is at least .Ω̃(T 2/3). Thus, the best achieved regret 
(whose dependency on T is .Õ(

√
T )) in  static RL with switching costs (in [45, 

46], etc) as well as adversarial RL without switching costs (in [2, 6], etc) is no 
longer achievable. This demonstrates the fundamental challenge of switching costs 
in adversarial RL, and it is expected that new challenges will arise when developing 
provably efficient algorithms. 

Note that the bandit setting is a special case (when .S = H = 1) of our MDP 
setting. Thus, the lower bound for the adversarial bandit setting in [43] serves as  
a lower bound in our MDP setting. However, the direct use of such a lower bound 
from bandits will not be good enough for the MDP case that we study in this chapter. 
To get the lower bound in Theorem 1, the most challenging and interesting part is to 
design the lower-bound instance. Notice that a lower-bound transition is constructed 
for stochastic MDP in [46], which shows that the MDP setting is at least as difficult 
as multi-armed bandits with .Ω(HSA) arms, and then a similar lower bound can be 
obtained based on the lower bound from bandits. Below, we construct a new lower-
bound instance. Specifically, we divide the state space . S and construct special state 
transitions, such that the episodic reinforcement learning is reduced to . Θ(S/H)

chains of bandit learning. Notice that the lower-bound analysis in [43] implies that,  
with the loss function . lt upper-bounded by H , A arms and T time-slots, the regret of 
any bandit-learning algorithm with switching costs is at least . Ω̃

(
β1/3A1/3(HT )2/3

)
when .T ≥ max{6H 2A, β}. Hence, the total regret from all .Θ(S/H) chains of bandit 

learning is at least .Ω̃
(
β1/3A1/3(H T

S/H
)2/3
)

· Θ(S/H) = Ω̃
(
β1/3(HSA)1/3T 2/3

)
. 

Please see the detailed proof below. 

Proof of Theorem 1 

Lower-bound instance: We consider a special instance where .S − 2 is divisible 
by .H − 1. First, we assign the states in the state space . S to each layer as follows. 
The first layer contains a single sate, i.e., .S0 = {s0}. All episodes end with state 
.SH = {sH }. Moreover, the rest of the .S − 2 states are assigned to each layer 
.h ∈ [1,H − 1] evenly. That it, each layer .h ∈ [1,H − 1] contains . S−2

H−1 states. 
Following the sequence of the states at each layer, we call the index i of the i-
th state the “order” of it. In addition, the order i of the states at layer h of any 
episode is the same, e.g., the first state at layer h is always the first state at layer 
h for all episodes, and the second state at layer h is always the second state at 
layer h for all episodes. Moreover, all actions are available at each state .s ∈ S. 
Finally, based on this construction of the states and actions, we run independently 
the lower-bound algorithm for adversarial bandit learning with switching costs 
in [43] as a subroutine through all i-th states, for all .i = 1, ..., . S−2

H−1 . That is, for 
each layer .h = 1, ..., H − 1, .Ph(si |si, a) = 1 for all a, and .Ph(sj |si, a) = 0 for 
all .j /= i and all a.
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Lower-bound analysis: The lower-bound analysis in [43] implies that, with the 
loss function . lt upper-bounded by H , A arms and T time-slots, the regret 
(including both the loss regret and switching costs) of any bandit-learning 
algorithm with switching costs is at least .Ω̃

(
β1/3A1/3(HT )2/3

)
. Notice that 

based on our lower-bound instance constructed above, there are . S−2
H−1 chains of 

bandit learning. Hence, the total regret of any RL algorithm . π from all these . S−2
H−1

chains of bandit learning can be lower-bounded as follows, 

. Rπ(T ) ≥ Ω̃

⎛
⎝β1/3A1/3

(
H

T

S−2
H−1

)2/3
⎞
⎠ · S − 2

H − 1
= Ω̃

(
β1/3(HSA)1/3T 2/3

)
.

(14) 

⨅⨆
Further, in Theorem 2 below, we characterize precisely the new trade-off between 

the loss regret and switching costs defined in (12), followed by the proof of it. 
Intuitively, by switching more, the online RL algorithm can adapt more flexibly 
to the new information learned, and thus achieves a lower loss regret. On the other 
hand, if fewer switches are allowed, the online RL algorithm is less flexible to adapt 
to the new information learned, which will incur a larger loss regret. 

Theorem 2 For adversarial RL with switching costs, with the switching costs 

equal to .O
(
β ·N swi

)
, the loss regret can be lower-bounded by .Ω̃

(√
HSA
Nswi · T

)
. 

Alternatively, to achieve a loss regret equal to .Õ
(√

HSA
Nswi · T

)
, the switching costs 

incurred must be larger than .Ω
(
β ·N swi

)
. 

Theorem 2 provides an interesting and necessary trade-off between the loss regret 
and switching costs. We further elaborate this result in three cases. First, in order to 
achieve a loss regret .Õ(H

√
SAT ), Theorem 2 shows that the number of switches 

.N swi (and thus the switching costs incurred) must be linear in T , i.e., essentially 
switching at almost all episodes. This is consistent with the regret achieved in 
adversarial RL without switching costs, i.e., allowing switching linear-to-T number 
of times for free. But our result further implies that, without linear-to-T switches 
of the policy, it is impossible to achieve an .Õ(

√
T ) loss regret. Second, Theorem 2 

shows that, if only a constant or .O(ln ln T ) number of switches are allowed, the 
loss regret must be linear in T . In contrast, in static RL, an .Õ(

√
T ) loss regret 

is achieved with only .O(ln ln T ) switches [46]. This indicates that the adversarial 
nature of RL necessarily requires significantly more policy switches to achieve a 
low loss regret. Third, Theorem 2 suggests that the loss regret and switching costs 
can be balanced at the order of .Õ

(
T 2/3

)
. That is, to achieve the .Õ

(
T 2/3

)
loss 

regret, the switching costs incurred have to be .Ω̃
(
T 2/3

)
. This is consistent with 

Theorem 1, where the regret (including both the loss regret and switching costs) is 
lowered-bound by .Ω̃

(
T 2/3

)
.
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The proof of Theorem 2 follows the lower-bound proof above, but by considering 
the loss regret and switching costs separately. 

Proof of Theorem 2 To prove Theorem 2, we use the lower-bound instance that we 
constructed above for proving Theorem 1. First, the lower-bound analysis in [43] 
implies that, for adversarial bandit learning with the loss function . lt upper-bounded 
by H , A arms and T time-slots, when the total switching cost is equal to . O(β ·
N swi), the loss regret can be lower-bounded by .Ω̃

(√
A
Nswi · HT

)
. Notice that there 

are . S−2
H−1 chains of bandit learning in the lower-bound instance that we constructed 

above. Thus, with a total switching cost equal to .O(β ·N swi) ≜ O(β ·∑ S−2
H−1
i=1 N

swi
i ), 

the loss regret of any RL algorithm . π against the lower-bound instance that we 
constructed above can be lower-bounded as follows, 

. Rπ
loss(T ) ≥

S−2
H−1∑
i=1

Ω̃

(√
A

N swi
i

· H
T

S−2
H−1

)
= Ω̃

(√
HSA

N swi · T

)
,

where the equality is because .
∑ S−2

H−1
i=1

√
1
Nswi

i

≥
√

1
Nswi

(
S−2
H−1

)3/2
. Finally, the second 

half part of Theorem 2 is trivially true, since it is the converse-negative proposition 
of the first half part that we have proved above. ⨅⨆

4.3 The Case When the Transition Function Is Known 

In this subsection, we study the case when the transition function is known, and 
we will further explore the more challenging case when the transition function is 
unknown in Sect. 4.4. We propose a novel algorithm (please see Algorithm 2) for  the  
online defender with a regret that matches the lower bound in (13). Our algorithm 
is called Switching rEduced EpisoDic relative entropy policy Search (SEEDS). 

SEEDS is inspired by the episodic method in bandit learning [43]. In bandit 
learning, the idea is to divide the time horizon into .Θ(T 2/3) episodes, and pull one 
single Exp3-arm in an episode. By doing so, the total switching cost is trivially 
.O(T 2/3). Meanwhile, the loss regret in an episode is .Θ(η · (T 1/3)2), which is 
proportional to the loss variance in an episode. The final .O(T 2/3) regret is then 
achieved by taking the sum of all these costs and tuning the parameter . η =
Θ(T −2/3). However, in the adversarial MDP setting that we consider, there is a key 
difference due to random state-action visitations that cause several new challenges 
as we discuss in the rest of this section. 

Super-Episode-Based Policy Search SEEDS divides the episodes into . U = ⌈T
τ

⌉
super-episodes, where .τ ∈ Z++ is a tunable parameter and a strictly positive 
integer. Each super-episode includes . τ consecutive episodes. For all episodes in
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Algorithm 2 Switching rEduced EpisoDic relative entropy policy Search (SEEDS) 
Parameters: η = Θ̃

(
β−1/3H 2/3(SA)−1/3T −2/3

)
and τ = Θ̃

(
β2/3(HSA)−1/3T 1/3

)
. 

Initialization: Pr[a|s] =  1 
A for all (s, a) ∈ S×A. Choose πSEEDS 

[1] according to (11). 

for u = 1 : ⌈ T 
τ

⌉
do 

for t = (u − 1)τ + 1 : min{uτ, T } do 
Step 1: Execute the updated policy πSEEDS[u] = π ̂q

SEEDS,P 
[u] . 

end for 
At the end of super-episode u, 
Step 2: Estimate the losses l̂SEEDS[u] (s, a) for all (s, a) according to (15). 
Step 3: Update the occupancy measure q̂

SEEDS,P 
[u+1] (s, a) according to (19). Update the 

deterministic policy π ̂q
SEEDS,P 
[u+1] according to (11). 

end for 

Fig. 3 The SEEDS algorithm for adversarial RL with switching costs 

each super-episode .u = 1, . ..., . U, SEEDS uses the same policy .πq̂
SEEDS,P
[u] (Step-

1 in Algorithm 2) that was updated at the end of the last super-episode .u − 1, 
where .q̂SEEDS,P

[u] is the updated occupancy measure (that we will introduce soon) 
of SEEDS for super-episode u. Thus, SEEDS switches the policy at most once in 
each super-episode (Fig. 3). 

The Idea for Estimating the Losses At the end of super-episode u, SEEDS esti-
mates the losses .l[u](s, a) of all state-action pairs in super-episode u. Here, it is 
instructive to see why the episodic importance-estimating method in adversarial 
bandit learning (i.e., without state transitions) does not apply to our problem. Note 
that due to state transitions in our more general MDP setting, we are not guaranteed 
to visit a single state-action pair for the whole super-episode. A naive but intuitive 
solution may be pretending that each state-action pair visited in super-episode u was 
the single one visited. Then, we can let the estimated loss of each state-action pair 

.(s, a) to be .l̂[u](s, a) = l̄[u](s,a)

1−(1−q̂
SEEDS,P
[u] (s,a))τ

1{(s,a) was visited in super-episode u}, where 

the numerator .l̄[u](s, a) = ∑uτ
t=(u−1)τ+1 lt (s, a)/τ is the average loss of .(s, a). If  

we assume that the loss . lt for all episodes t in super-episode u were the same, 
according to the analysis in bandit learning and the inequality .1−(1−x)τ ≥ x for all 
.0 ≤ x ≤ 1, this idea would have worked. However, the problem is that, inside super-
episode u, the loss function . lt for each episode t could change arbitrarily. Thus, the 
estimated loss .l̂[u](s, a) above is actually unknown and an ill-defined value.



Adversarial Online Reinforcement Learning Under Limited Defender Resources 277

To resolve the aforementioned difficulty due to randomly-visited state-action 
pairs and arbitrarily-changing loss functions, SEEDS estimates the loss as follows 
(Step-2 in Algorithm 2), 

.l̂SEEDS[u] (s, a) =
J[u]∑
j=1

ltj (s,a)(s, a)

q̂
SEEDS,P
[u] (s, a)

1{(s,a):t1(s,a),...,tJ[u] (s,a)}, (15) 

where .1{(s,a):t1(s,a),...,tJ[u] (s,a)} is an indicator function for whether .(s, a) was visited 
in episodes .t1(s, a), ..., tJ[u](s, a) of super-episode u, and .J[u] is the maximum 
number of episodes that the state-action pair .(s, a) was visited in super-episode u. 
In other words, in super-episode u, this state-action pair .(s, a) was not visited in any 
other episode t , such that .t ∈ {(u − 1)τ + 1, ..., uτ }/{t1(s, a), ..., tJ[u](s, a)}. Thus, 
SEEDS estimates the losses based on the observable true losses in super-episode 
u. In this way, SEEDS elegantly resolves the aforementioned difficulty due to the 
random state transitions and adversarial losses. Our novel idea in (15) may be of 
independent interest for other problems with state transitions and non-stationary or 
adversarial losses. Indeed, in Sect. 4.4, we will apply this idea to the case when the 
transition function is unknown. 

In Lemma 1 below, we show that the estimated loss in (15) is an unbiased 
estimation of the true loss in super-episode u. This is an important property that 
we will exploit in our regret analysis. We use .F[u] to denote the .σ -algebra generated 
by the observation of SEEDS before super-episode u. 

Lemma 1 The conditional expectation of the estimated loss designed in (15) is  
equal to 

.E

[
l̂SEEDS[u] (s, a)

∣∣∣F[u]
]

= l[u](s, a), for all (s, a), (16) 

where the expectation is taken with respect to the randomness of the episodes 
.t1(s, a), ..., .tJ[u](s, a), in which the state-action pair .(s, a) was visited, and 

.l[u](s, a) =∑min{uτ,T }
t=(u−1)τ+1 lt (s, a) is the true loss of .(s, a) in super-episode u. 

Proof of Lemma 1 First, since the expectation is taken with respect to the random-
ness of the episodes .t1(s, a), ..., .tJ[u](s, a), in which the state-action pair .(s, a) was 

visited, the left-hand-side of (16), .E
[
l̂SEEDS[u] (s, a)

∣∣∣F[u]
]
, is equal to 

.

∑
{t1(s,a),...,tJ[u] (s,a)}

⊆[(u−1)τ+1,uτ ]

l̂SEEDS[u] (s, a) · Pr
[{t1(s, a), ..., tJ[u](s, a)}∣∣F[u]

]
.
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Next, according to the definition of the estimated loss that we design in (15), we 
have 

. E

[
l̂SEEDS[u] (s, a)

∣∣∣F[u]
]

=
∑

{t1(s,a),...,tJ[u] (s,a)}
⊆[(u−1)τ+1,uτ ]

J[u]∑
j=1

ltj (s,a)(s, a)

q̂
SEEDS,P
[u] (s, a)

· 1{(s,a):t1(s,a),...,tJ[u] (s,a)} · Pr
[{t1(s, a), ..., tJ[u](s, a)}∣∣F[u]

]
.

In the following, we prove that 

. 
∑

{t1(s,a),...,tJ[u] (s,a)}
⊆[(u−1)τ+1,uτ ]

J[u]∑
j=1

ltj (s,a)(s, a)

q̂
SEEDS,P
[u] (s, a)

· 1{(s,a):t1(s,a),...,tJ[u] (s,a)}

· Pr
[{t1(s, a), ..., tJ[u](s, a)}∣∣F[u]

]= uτ∑
t=(u−1)τ+1

q̂
SEEDS,P
[u] (s, a) · lt (s, a)

q̂
SEEDS,P
[u] (s, a)

.

That is, under our design of the estimated loss in (15), summing over all possible sets 
of the random episodes where the state-action pair was visited (i.e., the outer sum 
on the left-hand-side) is equivalent to summing over all deterministic episodes from 
the beginning to the end of a super-episode (i.e., the sum on the right-hand-side). 

This is because first, relying on the above indicator function on the left-hand-
side, the sum of the total observed loss in a super-episode over all possible sets 
.{t1(s, a), ..., tJ[u](s, a)} is equivalent to the sum of the total true loss in each episode 
of a super-episode based on whether the episode is observed. Therefore, we have 

. E

[
l̂SEEDS[u] (s, a)

∣∣∣F[u]
]

=
uτ∑

t=(u−1)τ+1

∑
{t1(s,a),...,tJ[u] (s,a)}:

t∈{t1(s,a),...,tJ[u] (s,a)}

lt (s, a)

q̂
SEEDS,P
[u] (s, a)

· Pr
[{t1(s, a), ..., tJ[u](s, a)}∣∣F[u]

]
. (17) 

In addition, since the transition function P is known, conditioned on . F[u], the  
probability of visiting each state-action pair .(s, a) in an episode t of super-episode 
u is equal to the occupancy measure .q̂

SEEDS,P
[u] (s, a), i.e., 

.

∑
{t1(s,a),...,tJ[u] (s,a)}:

t∈{t1(s,a),...,tJ[u] (s,a)}

Pr
[{t1(s, a), ..., tJ[u](s, a)}∣∣F[u]

] = q̂
SEEDS,P
[u] (s, a). (18) 

Finally, by combining (17) and (18), we have
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. E

[
l̂SEEDS[u] (s, a)

∣∣∣F[u]
]

=
uτ∑

t=(u−1)τ+1

q̂
SEEDS,P
[u] (s, a) · lt (s, a)

q̂
SEEDS,P
[u] (s, a)

=
uτ∑

t=(u−1)τ+1

lt (s, a) = l[u](s, a).

⨅⨆
Updating the Occupancy Measure Finally, according to online mirror descent [6, 
47], SEEDS updates the occupancy measure .q̂

SEEDS,P
[u+1] (s, a) for all state-action pairs 

.(s, a) ∈ S×A as follows (Step-3 in Algorithm 2), 

.q̂
SEEDS,P
[u+1] = argmin

q∈C(P )

{
η ·
〈
q, l̂SEEDS[u]

〉
+ DKL

(
q

∥∥∥q̂SEEDS,P
[u]

)}
, (19) 

where .DKL(q‖q ') ≜
∑

s∈S,a∈A
q(s, a) ln q(s,a)

q '(s,a)
− ∑

s∈S,a∈A

[
q(s, a) − q '(s, a)

]
is the 

unnormalized relative entropy between two occupancy measures q and . q ' on the 
space .S × A. Recall that .C(P ) is formulated by (8)–(10). Note that the term 
.〈q, l̂SEEDS[u] 〉 represents the expected loss in super-episode u, with respect to the 

newly-estimated loss function .l̂SEEDS[u] . Thus, it captures how SEEDS adapts to and 

explores the newly-estimated loss function. In addition, the term . DKL(q‖q̂SEEDS,P
[u] )

serves as a regularizer to ensure that the updated occupancy measure in (19) stays 
close to .q̂SEEDS,P

[u] . Thus, it captures how SEEDS exploits the previously-estimated 
loss functions before super-episode u. As a result, by tuning the parameter . η in 
(19), the updated occupancy measure strikes a balance between exploration and 
exploitation. 

We characterize the regret of SEEDS in Theorem 3 below. 

Theorem 3 Consider adversarial RL with switching costs introduced in Sect. 4.1. 
When the transition function P is known, the regret of SEEDS is upper-bounded as 
follows, 

.RSEEDS(T ) ≤ Õ
(
β1/3 (HSA)1/3 T 2/3

)
. (20) 

Theorem 3 shows that the regret of SEEDS matches the lower bound in (13) in  
terms of the dependency on all the parameters T , S, A, H and . β. Thus, the regret 
of SEEDS is order-wise optimal. To the best of our knowledge, this is the first regret 
result for adversarial RL with switching costs. 

Since the total switching cost of SEEDS is trivially upper-bounded by .β · ⌈T
τ

⌉
, 

to prove Theorem 3, we focus on upper-bounding the loss regret of SEEDS, i.e.,
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. RSEEDS
loss (T ) = max

q∈C(P )
E

[
T∑

t=1

〈
q
SEEDS,P
t − q, lt

〉∣∣∣∣∣SEEDS, P

]

≜ E

[
T∑

t=1

〈
q
SEEDS,P
t − qπ∗

, lt

〉∣∣∣∣∣SEEDS, P

]
.

To upper-bound the loss regret, the main difficulty lies in capturing the effects of 
the arbitrarily-changing losses and multiple random visitations of each state-action 
pair in a super-episode. To overcome this difficulty, our proof of Theorem 3 first 
upper-bounds the loss regret based on the correlated loss feedback in a super-episode 
(which relies on our new design of the estimated loss in (15) and Lemma 1), and then 
relates these upper bounds across all super-episodes to the final regret (which relies 
on another lemma, Lemma 2 below, which transfers the original regret formulation 
to a form based on the losses from the entire super-episode). 

Specifically, for each super-episode, we first relate the true occupancy measure 
.q
SEEDS,P
t to the unconstrained solution .q̃

SEEDS,P
[u+1] to (19). Then, we relate . q̃

SEEDS,P
[u+1]

to the optimal offline occupancy measure . qπ∗
. The gaps between them are upper-

bound mainly by using Lemma 1. Finally, by combining all the loss gaps (according 
to Lemma 2 and super-episodic version of online mirror descent) and the switching-
cost upper-bound .β

⌈
T
τ

⌉
, and tuning the parameters . η and . τ as in Algorithm 2, we  

can get the regret of SEEDS in Theorem 3 and the trade-off in Theorem 4. Please 
see the detailed proof below. 

Proof of Theorem 3 

Step-1 (Bounding the switching costs): Since SEEDS switches at most once in 
each super-episode, the total switching cost of SEEDS is upper-bounded by . β ·⌈

T
τ

⌉
. In the following, we focus on upper-bounding the loss regret .RSEEDS

loss (T ). 
Step-2 (Bounding the loss regret): First, since SEEDS applies the same occu-

pancy measure for all episodes t of the same super-episode u and the transition 
function P is known, conditioned on the history before super-episode u, the true 
occupancy measures of these episodes are the same. Then, according to Lemma 2 
below, we can transfer the original regret formulation to a form based on the 
losses from the entire super-episode. 

Lemma 2 The loss regret .RSEEDS
loss (T ) of SEEDS is equal to 

.E

[
T∑

t=1

〈
q
SEEDS,P
t − qπ∗

, lt

〉]
= E

[ U∑
u=1

〈
q
SEEDS,P
[u] − qπ∗

, l[u]
〉]

. (21) 

Note that the occupancy measure and loss on the left-hand-side of (21) are  
for each episode t , while those on the right-hand-side of (21) are for each super-
episode u. 

Next, we use .q̃
SEEDS,P
[u+1] to denote the unconstrained solution to (19), i.e.,



Adversarial Online Reinforcement Learning Under Limited Defender Resources 281

. q̃
SEEDS,P
[u+1] ≜ argmin

q

{
η ·
〈
q, l̂SEEDS[u]

〉
+ DKL

(
q

∥∥∥q̂SEEDS,P
[u]

)}
.

Notice that .q̂SEEDS,P
[u+1] is the constrained solution to (19), where the constraint is 

.q ∈ C(P ). It is not hard to get that 

.q̃
SEEDS,P
[u+1] (s, a) = q̂

SEEDS,P
[u] (s, a) · e

−ηl̂SEEDS[u] (s,a)
. (22) 

To get (22), let us consider the function .f (q) = η·
〈
q, l̂SEEDS[u]

〉
+DKL

(
q

∥∥∥q̂SEEDS,P
[u]

)
. 

According to the definition of .DKL(q‖q ') right after (19), the derivative of function 
.f (q) is 

. 
∂f (q)

∂q(s, a)
= η · l̂SEEDS[u] (s, a) + ln

q(s, a)

q̂
SEEDS,P
[u] (s, a)

.

By letting the derivative to be 0 and rearranging the terms, we have (22). 
Then, because of Lemma 2 and the fact that the calculated occupancy measure 

.q̂
SEEDS,P
[u] is equal to the true occupancy measure .q

SEEDS,P
[u] , we have  

. E

[
T∑

t=1

〈
q
SEEDS,P
t − qπ∗

, lt

〉]
= E

[ U∑
u=1

〈
q̂
SEEDS,P
[u] − qπ∗

, l[u]
〉]

.

According to the linearity of expectation, we can decompose the loss regret into two 
terms that are easier to be bounded as follows, 

. E

[
T∑

t=1

〈
q
SEEDS,P
t − qπ∗

, lt

〉]
=
U∑

u=1

E

[〈
q̂
SEEDS,P
[u] − qπ∗

, l[u]
〉]

=
U∑

u=1

EF[u]

[
E

[〈
q̂
SEEDS,P
[u] − qπ∗

, l[u]
〉∣∣∣F[u], P

]]

=
U∑

u=1

EF[u]

[
E

[〈
q̂
SEEDS,P
[u] − q̃

SEEDS,P
[u+1] , l[u]

〉∣∣∣F[u], P
]]

+
U∑

u=1

EF[u]

[
E

[〈
q̃
SEEDS,P
[u+1] − qπ∗

, l[u]
〉∣∣∣F[u], P

]]
,

(23) 

where the second equality is because .E[X] = E[E[X|Y ]], the last equality 
is because of the linearity of the expectation, and we drop the condition on 
SEEDS since it is clear from the context.



282 M. Shi et al.

Below, we focus on upper-bounding the two terms on the right-hand-side of (23) 
one-by-one. 

Step-2-i (Bounding the First Term) Since .ex ≥ 1 + x, from (22) we have  

. q̂
SEEDS,P
[u] (s, a) − q̃

SEEDS,P
[u+1] (s, a) ≤ ηq̂

SEEDS,P
[u] (s, a) · l̂SEEDS[u] (s, a).

Thus, the first term on the right-hand-side of (23) can be upper-bounded as follows, 

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS,P
[u] − q̃

SEEDS,P
[u+1] , l[u]

〉∣∣∣F[u], P
]]

≤
U∑

u=1

EF[u]

⎡
⎣E
⎡
⎣ ∑

s∈S,a∈A
ηq̂

SEEDS,P
[u] (s, a) · l̂SEEDS[u] (s, a) · l[u](s, a)

∣∣∣∣∣∣F[u], P

⎤
⎦
⎤
⎦ .

Then, according to the definition of the estimated loss that we design in (15), we 
have 

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS,P
[u] − q̃

SEEDS,P
[u+1] , l[u]

〉∣∣∣F[u], P
]]

≤
U∑

u=1

EF[u]

[
E

[ ∑
s∈S,a∈A

ηq̂
SEEDS,P
[u] (s, a)

J[u]∑
j=1

ltj (s,a)(s, a)

q̂
SEEDS,P
[u] (s, a)

· 1{(s,a):t1(s,a),...,tJ[u] (s,a)} · l[u](s, a)

∣∣∣∣F[u], P
]]

≤
U∑

u=1

EF[u]

⎡
⎣E
⎡
⎣ ∑

s∈S,a∈A
η
(
l[u](s, a)

)2∣∣∣∣∣∣F[u], P

⎤
⎦
⎤
⎦ ≤ ηSA

⌈
T

τ

⌉
τ 2, (24) 

where the second inequality is because . 
J[u]∑
j=1

ltj (s,a)(s, a) ≤
min{uτ,T }∑

t=(u−1)τ+1
lt (s, a) =

l[u](s, a), and the last inequality is because .l[u](s, a) ≤ τ and .U = ⌈T
τ

⌉
. 

Step-2-ii (Bounding the Second Term) According to online mirror descent [6, 47], 
we have the following inequality for the unconstrained solution .q̃

SEEDS,P
[u+1] to (19), 

.

〈
q − q̃

SEEDS,P
[u+1] , η · l̂SEEDS[u] + ∂DKL(q‖q̂SEEDS,P

[u] )

∂q

∣∣∣∣
q=q̃

SEEDS,P
[u+1]

〉
≥ 0, for all q.
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Since .
∂DKL(q‖q̂SEEDS,P

[u] )

∂q

∣∣∣∣
q=q̃

SEEDS,P
[u+1]

= ln

(
q̃
SEEDS,P
[u+1]

q̂
SEEDS,P
[u]

)
, by rearranging the terms, we 

have 

. 

〈
q̃
SEEDS,P
[u+1] − q, η · l̂SEEDS[u]

〉
≤
〈
q − q̃

SEEDS,P
[u+1] , ln

(
q̃
SEEDS,P
[u+1]

q̂
SEEDS,P
[u]

)〉
, for all q.

By adding and subtracting terms on the right-hand-side, we have 

. 

〈
q̃
SEEDS,P
[u+1] − q, η · l̂SEEDS[u]

〉

≤
⎡
⎣ ∑

s∈S,a∈A
q(s, a) ln

q(s, a)

q̂
SEEDS,P
[u] (s, a)

−
∑

s∈S,a∈A

[
q(s, a) − q̂

SEEDS,P
[u] (s, a)

]⎤⎦

−
⎡
⎣ ∑

s∈S,a∈A

[
q̃
SEEDS,P
[u+1] (s, a) ln

q̃
SEEDS,P
[u+1] (s, a)

q̂
SEEDS,P
[u] (s, a)

−q̃
SEEDS,P
[u+1] (s, a) + q̂

SEEDS,P
[u] (s, a)

]]

+
[ ∑

s∈S,a∈A

(
q(s, a) − q̂

SEEDS,P
[u] (s, a)

)
+

∑
s∈S,a∈A

q(s, a) ln
q̃
SEEDS,P
[u+1] (s, a)

q(s, a)

−
∑

s∈S,a∈A

(
q̃
SEEDS,P
[u+1] (s, a) − q̂

SEEDS,P
[u] (s, a)

) ]

= DKL

(
q
∥∥q̂SEEDS,P

[u]
)

− DKL

(
q̃
SEEDS,P
[u+1]

∥∥q̂SEEDS,P
[u]

)
− DKL

(
q
∥∥q̃SEEDS,P

[u+1]
)

.

Then, together with Lemma 1, we have  

. 

U∑
u=1

EF[u]

[
E

[〈
q̃
SEEDS,P
[u+1] − qπ∗

, l[u]
〉 ∣∣∣F[u], P

]]

≤ 1

η
·
U∑

u=1

EF[u]

[
E

[
DKL

(
q

∥∥∥q̂SEEDS,P
[u]

)
− DKL

(
q̃
SEEDS,P
[u+1]

∥∥∥q̂SEEDS,P
[u]

)

− DKL

(
q

∥∥∥q̃SEEDS,P
[u+1]

) ∣∣∣F[u], P
]]

.

Since the intermediate terms get cancelled and the relative entropy is always non-
negative, the second term on the right-hand-side of (23) can be upper-bounded as 
follows,
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. 

U∑
u=1

EF[u]

[
E

[〈
q̃
SEEDS,P
[u+1] − qπ∗

, l[u]
〉 ∣∣∣F[u], P

]]
≤ DKL(q‖q̂SEEDS,P

[1] )

η
≤ H

η
ln

SA

H
.

(25) 

Step-3 (Final step): Finally, by combining (24), (25) and the switching-cost 
upper-bound .β · ⌈T

τ

⌉
, and tuning the parameters . η and . τ as in Algorithm 2, we  

have that the regret of SEEDS is upper-bounded by .O
(
β1/3 (HSA)1/3 T 2/3

)
. 

⨅⨆
Further, in Theorem 4 below, we show that SEEDS attains a trade-off between the 

loss regret and switching costs that matches the trade-off in Theorem 2. The proof 
of Theorem 4 follows the loss-regret bound of SEEDS and the trivial switching-cost 
bound .β · ⌈T

τ

⌉
. 

Theorem 4 Let .NSEEDS ≜
⌈

T
τ

⌉
. Then, with the switching costs equal 

to .O
(
β ·NSEEDS

)
, SEEDS can achieve a loss regret upper-bounded by 

.Õ
(√

HSA
NSEEDS · T

)
. 

Proof of Theorem 4 According to (24) and (25) above, with the total switching cost 
equal to .O

(
β · ⌈T

τ

⌉) = O(β ·NSEEDS), the loss regret of SEEDS is upper-bounded 
as follows, 

. RSEEDS
loss (T ) ≤ Õ

(
ηSAT τ + H

η

)
= Õ

(√
HSAT τ

)
= Õ

(√
HSA

NSEEDS · T

)
,

(26) 

where the first equality is by tuning .η =
√

H
SAT τ

, and the last equality is because 

.NSEEDS ≜
⌈

T
τ

⌉
. ⨅⨆

4.4 The Case When the Transition Function Is Unknown 

In this subsection, we study a more challenging case when the transition function 
is unknown. We propose another algorithm (please see Algorithm 3) for the online 
defender with a regret that matches the lower bound in (13) in terms of the 
dependency on all parameters, except with a small factor of Õ(H 1/3). Specifically, 
to address the new difficulty due to the unknown transition function P in this case, 
we advance SEEDS into SEEDS-UT (where UT stands for “unknown transition") 
with three new components as we explain below.
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Algorithm 3 SEEDS-Unknown Transition (SEEDS-UT) 
Parameters: η = Θ̃

(
β−1/3H 1/3(SA)−1/3T −2/3

)
, τ = Θ̃

(
β2/3H−2/3(SA)−1/3T 1/3

)
, γ = 

Θ̃
(
β1/3H 2/3(SA)−2/3T −1/2

)
, and  0  < δ  <  1. 

Initialization: q̂SEEDS-UT,P 
[1] (s', s, a)  = 1 

Sh+1ShA and M[1](s', s, a)  = N[1](s, a) = 0, for all 
(s', s, a)  ∈ Sh+1 × Sh × A and all h. P[1] contains all possible transition functions. Choose 
πSEEDS-UT 

[1] = π ̂q
SEEDS-UT,P 
[1] according to (8) and  (11). 

for u = 1 : ⌈ T 
τ

⌉
do 

for t = (u − 1)τ + 1 : min{uτ, T } do 
Step 1: Execute the updated policy πSEEDS-UT[u] = π ̂q

SEEDS-UT,P 
[u] . 

end for 
At the end of super-episode u, 
Step 2: Estimate the losses l̂SEEDS-UT[u] (s, a) for all (s, a) according to (27). 
Step 3: Estimate the transition-function set P[u+1] according to (29). 
Step 4: Update the occupancy measure q̂SEEDS-UT,P 

[u+1] (s', s, a)  according to (19), but subject to 

a different constraint q ∈ C
(
P[u+1]

)
. Update the deterministic policy π ̂q

SEEDS-UT,P 
[u+1] according 

to (8) and  (11). 
end for 

1. Since the transition function P is unknown, updating the occupancy measure 
q̂(s, a) (as in SEEDS) is not good enough. Instead, SEEDS-UT updates the 
occupancy measure q̂(s', s, a)  to take state transitions into consideration. 

2. Since the transition function P is unknown, the updated occupancy measure 
could be different from the true one. To resolve this issue, we generalize the 
method in [48], with a difference to handle the random sequence of the state-
action pairs visited in each super-episode. Specifically, SEEDS-UT estimates the 
loss for each super-episode u as follows (Step-2 in Algorithm 3), 

.l̂SEEDS-UT[u] (s, a) =
J[u]∑
j=1

ltj (s,a)(s, a)

Qγ
[u](s, a)

1{(s,a):t1(s,a),...,tJ[u] (s,a)}, (27) 

where Qγ 
[u](s, a) ≜ maxq∈C(P[u]) q(s, a) + γ is the sum of the largest probability 

of visiting (s, a) among all occupancy measures in C(P[u]) and a tunable 
parameter γ >  0, and P[u] is a transition-function set that we will introduce 
soon. Note that (27) is another application of our idea in (15) for estimating 
losses in a problem with state transitions and adversarial losses. 

In Lemma 3 below, we show that the gap between the expectation of the 
estimated loss and the true loss is controlled by the parameter γ . The proof of 
Lemma 3 is similar to that of Lemma 1. 

Lemma 3 The conditional expectation of the estimated loss designed in (27) is  
equal to
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.E

[
l̂SEEDS-UT[u] (s, a)

∣∣∣F[u]
]

= q
SEEDS-UT,P
[u] (s,a)

maxq∈C(P[u]) q(s,a)+γ
· l[u](s, a), for all (s, a), (28) 

where the expectation is taken with respect to the randomness of the episodes 
t1(s, a), ..., tJ[u](s, a), in which  (s, a) was visited, q

SEEDS-UT,P 
[u] (s, a) is the 

true occupancy measure of SEEDS-UT conditioned on F[u], and l[u](s, a) =∑min{uτ,T } 
t=(u−1)τ+1 lt (s, a) is the true loss of (s, a) in super-episode u. 

Lemma 3 shows that, as long as P[u] is sufficiently good for estimating the 
true transition function P (we will show how to construct such a P[u] below), by 
carefully tuning γ , the bias caused by maxq∈C(P[u]) q(s, a) + γ (i.e., Qγ 

[u](s, a)) 
should be sufficiently small, so that the estimated loss is still sufficiently accurate. 

3. Since the transition function P is unknown, the constraint in (19) is no  
longer known. To resolve this issue, we generalize the method in [7], with a 
difference to handle the samples from the whole super-episode. Specifically, at 
the end of each super-episode, SEEDS-UT collects the samples from the whole 
super-episode to update the empirical transition probability P̄[u+1](s'|s, a) = 

M[u+1](s',s,a) 
max{N[u+1](s,a),1} , where M[u+1](s', s, a)  and N[u+1](s, a) denote the number of 

times visiting (s', s, a)  and (s, a) before super-episode u + 1, respectively. Then, 
based on the empirical Bernstein bound [49], SEEDS-UT constructs a transition-
function set P as follows (Step-3 in Algorithm 3), 

. P[u+1]

=
{
P̂[u+1] :

∣∣∣P̂[u+1](s'|s, a)−P̄[u+1](s'|s, a)

∣∣∣≤ ϵ[u+1](s', s, a), for all (s', s, a)
}

,

(29) 

where ϵ[u+1](s', s, a)  = 2

√
P̄[u+1](s',s,a) ln T SA  

δ 
max{N[u+1](s,a)−1,1} + 14 ln T SA  

δ 
3max{N[u+1](s,a)−1,1} , and 

δ ∈ (0, 1) is the confidence parameter. Finally, the occupancy measure 
q̂
SEEDS-UT,P 
[u+1] (s', s, a)  is updated according to (19), but subject to a different 
constraint q ∈ C

(
P[u+1]

)
(Step-4 in Algorithm 3). 

We characterize the regret of SEEDS-UT in Theorem 5 below. 

Theorem 5 Consider adversarial RL with switching costs introduced in Sect. 4.1. 
When the transition function P is unknown, with probability 1 − δ, the regret of 
SEEDS-UT is upper-bounded as follows, 

.RSEEDS-UT(T ) ≤ Õ
(
β1/3H 2/3 (SA)1/3 T 2/3

(
ln T SA

δ

)1/2)
. (30) 

Theorem 5 shows that the regret of SEEDS-UT matches the lower bound in (13) 
in terms of the dependency on T , S, A, and β, except with a small factor of Õ(H 1/3). 
That is, the regret of SEEDS-UT is near-optimal. To the best of our knowledge, this 
is the first regret result for adversarial RL with switching cost when the transition
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function is unknown. To prove Theorem 5, the main difficulty is that, due to the 
delayed switching and unknown transition function, the losses of SEEDS-UT in 
the episodes of any super-episode are correlated and the true occupancy measure 
is unknown. As a result, the existing analytical ideas in adversarial RL without 
switching costs and adversarial bandit learning with switching costs do not work 
here. To overcome these new difficulties, our analysis involves several new ideas, 
e.g., we construct a series in (40) to handle multiple random visitations of each state-
action pairs, and we establish a super-episodic version of concentration in Step-2-iii 
of Appendix 5 by relating the second-order moment of the estimated loss that we 
design to the true loss and the length τ of a super-episode. Please see Appendix 5 
for the detailed proof of Theorem 5. 

5 Conclusion and Future Work 

In this chapter, we gave an overview of adversarial RL without switching costs 
as the baseline, where the defender/agent is assumed to have unlimited power to 
change her policies all the time. We then described the state-of-the-art results for 
the adversarial bandit learning with switching costs, which is a special case of 
adversarial RL. After that, we focused on our recent development on adversarial RL 
with switching costs, where switching-reduced algorithms are provided to achieve 
near-optimal performance (in terms of regret), together with important lower bounds 
that could guide future work. 

Several future directions are worth pursuing. First, it is important to study more 
general adversarial online RL under limited defender resources, e.g., adversarial RL 
with switching costs in linear and more general MDP settings. Another interesting 
future work is to extend our study to the dynamic regret, which allows the optimal 
algorithm to change the defending policy over time. 

Appendix: Proof of Theorem 5 

Proof 

Step-1 (Bounding the switching costs): Since SEEDS-UT switches at most 
once in each super-episode, the total switching cost of SEEDS-UT is upper-
bounded by β · ⌈T 

τ

⌉
. In the following, we focus on upper-bounding the loss 

regret RSEEDS-UT 
loss (T ). 

Step-2 (Bounding the loss regret): We first show Lemma 4 below. Lemma 4 is 
critical for Lemma 2 to be true in this case with an unknown transition function. 

Lemma 4 For any two episodes t1 and t2, if the updated occupancy measures are 
the same, i.e., q̂t1(s

', s, a)  = q̂t2(s
', s, a)  for any (s', s, a), then the true occupancy
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measures are the same, i.e., qt1(s, a) = qt2(s, a) = q[u](s, a) for any (s, a), where 
q[u](s, a) is the true occupancy measure for the super-episode u. 

The proof of Lemma 4 follows the conditions in (8)–(11). Since SEEDS-UT 
applies the same occupancy measure q̂SEEDS-UT,P 

[u] for all episodes t of the same 

super-episode u, according to Lemma 4, the true occupancy measure qSEEDS-UT,P 
t 

of these episodes t are the same. Thus, similar to the case with a known transition 
function, we can get an unknown-transition version of Lemma 2 here. Thus, 

. E

[
T∑

t=1

〈
q
SEEDS-UT,P
t − qπ∗

, lt

〉 ∣∣∣P
]

= E

[ U∑
u=1

〈
q
SEEDS-UT,P
[u] − qπ∗

, l[u]
〉 ∣∣∣P

]
.

We drop the condition on SEEDS-UT in the expectation here and in the following 
when it is clear from the context. 

According to the linearity of expectation, we can decompose the loss regret into 
four terms that are easier to be bounded, i.e., 

. E

[
T∑

t=1

〈
q
SEEDS-UT,P
t − qπ∗

, lt

〉 ∣∣∣P
]

=
U∑

u=1

E

[〈
q
SEEDS-UT,P
[u] − qπ∗

, l[u]
〉 ∣∣∣P ]

=
U∑

u=1

{
EF[u]

[
E

[ 〈
q
SEEDS-UT,P
[u] − q̂

SEEDS-UT,P
[u] , l[u]

〉

+
〈
q̂
SEEDS-UT,P
[u] , l[u] − l̂SEEDS-UT[u]

〉

+
〈
q̂
SEEDS-UT,P
[u] − qπ∗

, l̂SEEDS-UT[u]
〉
+
〈
qπ∗

, l̂SEEDS-UT[u] − l[u]
〉 ∣∣∣F[u], P

]]}
.

(31) 

Below, we focus on upper-bounding the four terms on the right-hand-side of (31) 
one-by-one. 

Step-2-i (Bounding the First Term): Since lt (s, a) ≤ 1 for all state-action pairs 
(s, a), we have  l[u](s, a) ≤ τ for all (s, a). Thus, we have 

. 

〈
q
SEEDS-UT,P
[u] − q̂

SEEDS-UT,P
[u] , l[u]

〉
≤ τ ·

∑
s∈S,a∈A

∣∣∣qSEEDS-UT,P
[u] (s, a) − q̂

SEEDS-UT,P
[u] (s, a)

∣∣∣ .
The difference between the true occupancy measure and the updated occupancy 
measure on the right-hand-side depends on how good the transition-function setP in 
(29) is, and can be further upper-bounded by using Bernstein inequality [49]. Below, 
we focus on bounding this difference. We use π̃(a|s) to denote the probability of
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choosing action a at state s. Specifically, first, according to the relation between the 
occupancy measure and the transition function in (10), we have that for any state-
action pair (sh, ah) ∈ Sh ×A visited at stage h, 

. qπ,P (sh, ah) = π̃(ah|sh)
∑

(si∈Si ,ai∈A)h−1
i=0

h−1∏
j=0

[
π̃(aj |sj )P (sj+1|sj , aj )

]
,

where for simplicity, we drop the index t for the states s and actions a. Thus, the 
difference between the updated occupancy measure and the true occupancy measure 
can be upper-bounded as follows, 

. 

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah) − q

SEEDS-UT,P
[u] (sh, ah)

∣∣∣ = π̃SEEDS-UT[u] (ah|sh)

·
∑

(si∈Si ,ai∈A)h−1
i=0

h−1∏
j=0

π̃SEEDS-UT[u] (aj |sj )
⎡
⎣h−1∏

j=0

P̂[u](sj+1|sj , aj )

−
h−1∏
j=0

P(sj+1|sj , aj )

⎤
⎦ , (32) 

For the terms in the bracket [·], we have  

. 

h−1∏
j=0

P̂[u](sj+1|sj , aj ) −
h−1∏
j=0

P(sj+1|sj , aj )

=
h−1∏
j=0

P̂[u](sj+1|sj , aj ) −
h−1∏
j=0

P(sj+1|sj , aj )

±
h−1∑
k=1

k−1∏
j=0

P(sj+1|sj , aj )

h−1∏
j=k

P̂[u](sj+1|sj , aj )

=
h−1∑
k=0

[
P̂[u](sk+1|sk, ak) − P(sk+1|sk, ak)

] k−1∏
j=0

P(sj+1|sj , aj )

h−1∏
j=k

P̂[u](sj+1|sj , aj )

≤
h−1∑
k=0

ϵ̃[u](sk+1|sk, ak)

k−1∏
j=0

P(sj+1|sj , aj )

h−1∏
j=k

P̂[u](sj+1|sj , aj ), (33) 

where
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. ̃ϵ[u](sk+1|sk, ak) = O

⎛
⎝
√

P(sk+1|sk, ak) ln T SA
δ

max
{
N[u](sk, ak)}, 1

} + ln T SA
δ

max
{
N[u](sk, ak)}, 1

}
⎞
⎠
(34) 

shows how good SEEDS-UT estimates the true transition function, and the inequal-
ity is because of the empirical Bernstein inequality [49] and Lemma 8 in [7]. 
Applying (32) and (33) to SEEDS-UT, we have  

. 

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah) − q

SEEDS-UT,P
[u] (sh, ah)

∣∣∣ ≤ h−1∑
k=0

∑
(si∈Si ,ai∈A)h−1

i=0

ϵ̃[u](sk+1|sk, ak)

·
⎡
⎣π̃SEEDS-UT[u] (ak|sk)

k−1∏
j=0

π̃SEEDS-UT[u] (aj |sj )P (sj+1|sj , aj )

⎤
⎦

·
⎡
⎣π̃SEEDS-UT[u] (ah|sh)

h−1∏
j=k+1

π̃SEEDS-UT[u] (aj |sj )P̂ (sj+1|sj , aj )

⎤
⎦

=
h−1∑
k=0

∑
sk+1∈Sk+1,sk∈Sk,ak∈A

ϵ̃[u](sk+1|sk, ak)q
SEEDS-UT,P
[u]

× (sk, ak)q̂
SEEDS-UT,P
[u] (sh, ah|sk+1). (35) 

Similarly, we can show that 

. 

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah|sk+1) − q

SEEDS-UT,P
[u] (sh, ah|sk+1)

∣∣∣
=

h−1∑
j=k+1

∑
sj+1∈Sj+1,sj ∈Sj ,aj ∈A

ϵ̃[u](sj+1|sj , aj )q
SEEDS-UT,P
[u]

× (sj , aj |sk+1)q̂
SEEDS-UT,P
[u] (sh, ah|sj+1)

≤ π̃SEEDS-UT[u] (ah|sh)
h−1∑

j=k+1

∑
sj+1∈Sj+1,sj ∈Sj ,aj ∈A

ϵ̃[u](sj+1|sj , aj )q
SEEDS-UT,P
[u]

× (sj , aj |sk+1). (36) 

Combining (35) and (36), we have
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. 

U∑
u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah) − q

SEEDS-UT,P
[u] (sh, ah)

∣∣∣

≤
U∑

u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

h−1∑
k=0

×
∑

(sk+1,sk,ak)∈Sk+1×Sk×A
ϵ̃[u](sk+1|sk, ak)q

SEEDS-UT,P
[u] (sk, ak)

· q
SEEDS-UT,P
[u] (sh, ah|sk+1)

+
U∑

u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

h−1∑
k=0

×
∑

(sk+1,sk,ak)∈Sk+1×Sk×A
ϵ̃[u](sk+1|sk, ak)q

SEEDS-UT,P
[u] (sk, ak)

·
⎡
⎣π̃SEEDS-UT[u] (ah|sh)

h−1∑
j=k+1

× .
∑

(sj+1,sj ,aj )∈Sj+1×Sj ×A
ϵ̃[u](sj+1|sj , aj )q

SEEDS-UT,P
[u] (sj , aj |sk+1)

⎤
⎦ . (37) 

Since 
H−1∑
h=0

∑
(sh,ah)∈Sh×A 

q
SEEDS-UT,P 
[u] (sh, ah|sk+1) = 1, from (37), we have 

. 

U∑
u=1

H−1∑
h=0

∑
(sh,ah)∈Sh×A

∣∣∣q̂SEEDS-UT,P
[u] (sh, ah) − q

SEEDS-UT,P
[u] (sh, ah)

∣∣∣

≤
U∑

u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)q
SEEDS-UT,P
[u] (sk, ak)

+ S ·
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj )∈Sj+1×Sj ×A

ϵ̃[u](sk+1|sk, ak)q
SEEDS-UT,P
[u] (sk, ak)

· ϵ̃[u](sj+1|sj , aj )q
SEEDS-UT,P
[u] (sj , aj |sk+1).

(38)
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Let us focus on bounding the terms on the right-hand-side of (38) one-by-one. For 
the first term, we have 

. 

U∑
u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)q
SEEDS-UT,P
[u] (sk, ak)

= O

⎛
⎝ U∑

u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

q
SEEDS-UT,P
[u] (sk, ak)

√
P(sk+1|sk, ak) ln T SA

δ

max
{
N[u](sk, ak)}, 1

}

+ q
SEEDS-UT,P
[u] (sk, ak) ln T SA

δ

max
{
N[u](sk, ak)}, 1

}
)

≤ O

⎛
⎝ U∑

u=1

H−1∑
k=0

∑
(sk,ak)∈Sk×A

q
SEEDS-UT,P
[u] (sk, ak)

√
Sk+1 ln T SA

δ

max
{
N[u](sk, ak)}, 1

}

+ q
SEEDS-UT,P
[u] (sk, ak) ln T SA

δ

max
{
N[u](sk, ak)}, 1

}
)

,

where the equality is according to the definition of ϵ̃[u](sk+1|sk, ak) in (34), and 
the inequality is according to Cauchy-Schwarz inequality. Note that the difficulty 
to further bound the above terms is that each state-action pair could be visited 
multiple times in a super-episode u. To this end, we construct a series to achieve 
an analyzable intermediate step. Let us first imagine there is a sequence of numbers 
based on the samples that are collected from each single episode. Then, we use 
Nt(sk, ak) to denote the number of times visiting the state-action pair (sk, ak) before 
episode t . Since Nt(sk, ak) is non-decreasing as t increases, i.e., 

. N(u−1)τ+1(sk, ak) ≤ N(u−1)τ+2(sk, ak) ≤ ... ≤ Nuτ (sk, ak) = N[u](sk, ak),

(39) 

we have 

. 
q
SEEDS-UT,P
[u] (sk, ak)√

max
{
N[u](sk, ak)}, 1

} = q
SEEDS-UT,P
[u] (sk, ak)√
max {Nuτ (sk, ak)}, 1}

≤ ... ≤ q
SEEDS-UT,P
[u] (sk, ak)√

max
{
N(u−1)τ+1(sk, ak)}, 1

} .
Now, let us compare our regret bound before to a intermediate step that is based on 
this series, i.e.,
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. 

U∑
u=1

H−1∑
k=0

∑
(sk+1,sk,ak)∈Sk+1×Sk×A

ϵ̃[u](sk+1|sk, ak)q
SEEDS-UT,P
[u] (sk, ak)

≤ O

⎛
⎝1

τ

U∑
u=1

H−1∑
k=0

∑
(sk,ak)∈Sk×A

uτ∑
t=(u−1)τ+1

q
SEEDS-UT,P
[u] (sk, ak)

√
Sk+1 ln T SA

δ

max {Nt(sk, ak)}, 1}

+ q
SEEDS-UT,P
[u] (sk, ak) ln T SA

δ

max {Nt(sk, ak)}, 1}

)

≤ O

(
1

τ

H−1∑
k=0

√
SkSk+1AT ln

T SA

δ

)

≤ O

(
1

τ
HS

√
AT ln

T SA

δ

)
, (40) 

Let us now consider the second term on the right-hand-side of (38), which can be 
upper-bounded similarly to the steps above to bound the first term. First, according 
to the definition of ϵ̃[u](sk+1|sk, ak) in (34), we have this second term is upper-
bounded by 

. S · O

⎛
⎜⎜⎜⎝
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj )∈Sj+1×Sj ×A

×
√

P(sk+1|sk, ak) ln T SA
δ

max
{
N[u](sk, ak)}, 1

} q
SEEDS-UT,P
[u] (sk, ak)

·
√

P(sj+1|sj , aj ) ln T SA
δ

max
{
N[u](sj , aj )}, 1

}qSEEDS-UT,P
[u] (sj , aj |sk+1) + ln

T SA

δ

·
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak)∈Sk+1×Sk×A
(sj+1,sj ,aj )∈Sj+1×Sj ×A

q
SEEDS-UT,P
[u] (sk, ak)

max
{
N[u](sk, ak)}, 1

}

+ q
SEEDS-UT,P
[u] (sj , aj )

max
{
N[u](sj , aj )}, 1

}
)

.

Next, according to Cauchy-Schwarz inequality, we have the terms inside the big-O 
notation can be upper-bounded by
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. ln
T SA

δ

·
⎡
⎣H−1∑

k=0

H−1∑
j=k+1

·
√√√√√√
U∑

u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

q
SEEDS-UT,P
[u] (sk, ak)P (sk+1|sk, ak)q

SEEDS-UT,P
[u] (sj , aj |sk+1)

max
{
N[u](sk, ak)}, 1

}

·
√√√√√√
U∑

u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

q
SEEDS-UT,P
[u] (sk, ak)P (sj+1|sj , aj )q

SEEDS-UT,P
[u] (sj , aj |sk+1)

max
{
N[u](sj , aj )}, 1

}

+
U∑

u=1

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

(
q
SEEDS-UT,P
[u] (sk, ak)

max
{
N[u](sk, ak)}, 1

}

+ q
SEEDS-UT,P
[u] (sj , aj )

max
{
N[u](sj , aj )}, 1

}
)]

.

Then, according to (39), we have that the terms under the
√· operator can be upper-

bounded by 

. 
1

τ

U∑
u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

uτ∑
t=(u−1)τ+1

× q
SEEDS-UT,P
[u] (sk, ak)P (sk+1|sk, ak)q

SEEDS-UT,P
[u] (sj , aj |sk+1)

max {Nt(sk, ak)}, 1}

· 1
τ

U∑
u=1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

uτ∑
t=(u−1)τ+1

× q
SEEDS-UT,P
[u] (sk, ak)P (sj+1|sj , aj )q

SEEDS-UT,P
[u] (sj , aj |sk+1)

max
{
Nt(sj , aj )}, 1

} ,

and the second term in the bracket [·] can be upper-bounded by
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. 

U∑
u=1

1

τ

H−1∑
k=0

H−1∑
j=k+1

∑
(sk+1,sk,ak),
(sj+1,sj ,aj )

uτ∑
t=(u−1)τ+1

×
(

q
SEEDS-UT,P
[u] (sk, ak)

max {Nt(sk, ak)}, 1} + q
SEEDS-UT,P
[u] (sj , aj )

max
{
Nt(sj , aj )}, 1

}
)

.

Combining the above steps and according to Lemma 10 in [7], we have that 
the second term on the right-hand-side of (38) can be upper-bounded by 

O
(
1 
τ H

2S2A ln T SA  
δ

)
. 

Therefore, with probability 1−δ, the first term on the right-hand-side of (31) can 
be upper-bounded by 

.O

(
HS

√
AT ln

T SA

δ
+ H 2S2 ln

T SA

δ

)
. (41) 

Step-2-ii (Bounding the Second Term) The second term on the right-hand-side of 
(31) can be further decomposed into two terms as follows, 

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] , l[u] − l̂SEEDS-UT[u]

〉∣∣∣F[u], P
]]

=
U∑

u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT[u]

]〉∣∣∣F[u], P
]]

+
U∑

u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] ,E

[
l̂SEEDS-UT[u]

]
− l̂SEEDS-UT[u]

〉∣∣∣F[u], P
]]

.

(42) 

Let us consider the two terms on the right-hand-side. First, according to Lemma 3, 
we have 

.

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT[u]

]〉∣∣∣F[u], P
]]

=
U∑

u=1

EF[u]

⎡
⎣E
⎡
⎣ ∑

s∈S,a∈A
q̂
SEEDS-UT,P
[u] (s, a)l[u](s, a)

×
(
1 − q

SEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

)∣∣∣∣∣F[u], P
]]

.
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Since l[u](s, a) ≤ τ and Qγ 
[u](s, a) ≥ q̂

SEEDS-UT,P 
[u] (s, a), we have  

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT[u]

]〉∣∣∣F[u], P
]]

≤ τ

U∑
u=1

EF[u]

⎡
⎣E
⎡
⎣ ∑

s∈S,a∈A

∣∣∣Qγ
[u](s, a) − q

SEEDS-UT,P
[u] (s, a)

∣∣∣
∣∣∣∣∣∣F[u], P

⎤
⎦
⎤
⎦

≤ τ

U∑
u=1

EF[u]

⎡
⎣E
⎡
⎣ ∑

s∈S,a∈A

∣∣∣∣∣ max
P̂∈P[u]

qP̂[u](s, a) + γ − q
SEEDS-UT,P
[u] (s, a)

∣∣∣∣∣
∣∣∣∣∣∣F[u], P

⎤
⎦
⎤
⎦ ,

where the term max
P̂∈P[u] 

q P̂[u](s, a) − qSEEDS-UT,P 
[u] (s, a) on the right-hand-side rep-

resents how well SEEDS-UT estimates the true occupancy measure using the 
transition-function set, and the term γ on the right-hand-side verifies that this part 
of the gap is controlled by the parameter γ . Then, according to the bound for the 
first term on the right-hand-side of (31), we have 

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] , l[u] − E

[
l̂SEEDS-UT[u]

]〉∣∣∣F[u], P
]]

≤ O

(
HS

√
AT ln

T SA

δ

)
+ γ T SA.

Second, according to Azuma’s inequality, we have with probability 1 − δ, 

. 

U∑
u=1

EF[u]

[
E

[〈
q̂
SEEDS-UT,P
[u] ,E

[
l̂SEEDS-UT[u]

]
− l̂SEEDS-UT[u]

〉∣∣∣F[u], P
]]

≤ O

(
τH

√
T

τ
ln

1

δ

)
≤ O

(
H

√
T τ ln

1

δ

)
. (43) 

Therefore, with probability 1−δ, the second term on the right-hand-side of (31) can 
be upper-bounded by 

.O

(
HS

√
AT ln

T SA

δ
+ γ T SA + H

√
T τ ln

1

δ

)
. (44) 

Step-2-iii (Bounding the Third Term) Follow our proof for the case when the 
transition function is known, it is not hard to show that
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. 

U∑
u=1

〈
q̂
SEEDS-UT,P
[u] − qπ∗

, l̂SEEDS-UT[u]
〉

≤ η

U∑
u=1

∑
s∈S,a∈A

q̂
SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT[u] (s, a)

)2 + H ln(SA)

η
.

Let us focus on the first term on the right-hand-side. Note that different from that 
in [7], the loss l̂SEEDS-UT[u] (s, a) above is calculated based on the samples from a 
whole super-episode. Thus, each state-action pair could be visited multiple times. 
To this end, we provide a super-episodic version of loss concentration as follows, 

. 

U∑
u=1

∑
s∈S,a∈A

q̂
SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT[u] (s, a)

)2 ≤ τH

2γ
ln

H

δ

+
U∑

u=1

∑
s∈S,a∈A

τqSEEDS-UT[u]
max

P̂∈P[u]
qP̂[u](s, a)

l[u](s, a).

In the following, we show how to get this. First, since 

. ̂lSEEDS-UT[u] (s, a) =
J[u]∑
j=1

ltj (s,a)(s, a)

Qγ
[u](s, a)

1{(s,a):t1(s,a),...,tJ[u] (s,a)} ≤ τ

Qγ
[u](s, a)

,

we have 

. q̂
SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT[u] (s, a)

)2 ≤ τ q̂
SEEDS-UT,P
[u] (s, a)

Qγ
[u](s, a)

l̂SEEDS-UT[u] (s, a)

≤ τ l̂SEEDS-UT[u] (s, a)

= τ

J[u]∑
j=1

ltj (s,a)(s, a)

Qγ
[u](s, a)

1{(s,a):t1(s,a),...,tJ[u] (s,a)}

= τ

uτ∑
t=(u−1)τ+1

lt (s, a)

Qγ
[u](s, a)

1{(s,a) was visited in episode t of super-episode u}.

Let us define 

.l̃t (s, a) ≜ lt (s, a)1{(s,a) was visited in episode t of super-episode u}
Qγ

[u](s, a)
.
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Then, we have 

. 

T∑
t=1

∑
s∈S,a∈A

2γ

⎛
⎜⎜⎝l̃t (s, a) − qSEEDS-UT[u]

max
P̂∈P[u]

qP̂[u](s, a)
lt (s, a)

⎞
⎟⎟⎠ ≤ H ln

H

δ
.

By combining all episodes in the same super-episode u together, we have 

. 

U∑
u=1

∑
s∈S,a∈A

2γ

⎛
⎜⎜⎝

uτ∑
t=(u−1)τ+1

l̃t (s, a) − qSEEDS-UT[u]
max

P̂∈P[u]
qP̂[u](s, a)

l[u](s, a)

⎞
⎟⎟⎠ ≤ H ln

H

δ
.

By rearranging the terms, we have 

. 

U∑
u=1

∑
s∈S,a∈A

l̃[u](s, a) ≤ H

2γ
ln

H

δ
+
U∑

u=1

∑
s∈S,a∈A

qSEEDS-UT[u]
max

P̂∈P[u]
qP̂[u](s, a)

l[u](s, a)

≤ H

2γ
ln

H

δ
+
U∑

u=1

∑
s∈S,a∈A

l[u](s, a) ≤ H

2γ
ln

H

δ
+ T

τ
SAτ = H

2γ
ln

H

δ
+ T SA.

Thus, we have 

. 

U∑
u=1

∑
s∈S,a∈A

q̂
SEEDS-UT,P
[u] (s, a)

(
l̂SEEDS-UT[u] (s, a)

)2 ≤ τ · H

2γ
ln

H

δ
+ τT SA.

Therefore, with probability 1 − δ, the third term on the right-hand-side of (31) can 
be upper-bounded by 

.O

(
ητH

γ
ln

H

δ
+ ητT SA + H ln(SA)

η

)
. (45) 

Step-2-iv (Bounding the Fourth Term) First, it is not hard to get that with probability 
1 − δ, 

.

U∑
u=1

l̂SEEDS-UT[u] (s, a) ≤ 1

2γ
ln

H

δ
+
U∑

u=1

q
SEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a). (46) 

Thus, we have
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. 

U∑
u=1

〈
qπ∗

, l̂[u] − l[u]
〉
=
U∑

u=1

∑
s∈S,a∈A

qπ∗
(s, a)l̂[u](s, a)

−
U∑

u=1

∑
s∈S,a∈A

qπ∗
(s, a)l[u](s, a)

≤
∑

s∈S,a∈A
qπ∗

(s, a)
1

2γ
ln

H

δ
+

∑
s∈S,a∈A

qπ∗
(s, a)·

U∑
u=1

q
SEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
l[u](s, a)

−
U∑

u=1

∑
s∈S,a∈A

qπ∗
(s, a)l[u](s, a).

≤ H

2γ
ln

H

δ
+
U∑

u=1

∑
s∈S,a∈A

qπ∗
(s, a)l[u](s, a)

⎛
⎜⎜⎝q

SEEDS-UT,P
[u] (s, a)

max
P̂∈P[u]

qP̂[u](s, a)
− 1

⎞
⎟⎟⎠

≤ H

2γ
ln

H

δ
. (47) 

Step-3 (Final step): Finally, by combining (41), (44), (45), (47) and the 
switching-cost upper-bound β · ⌈T 

τ

⌉
, and tuning the parameters η, τ and γ 

as in Algorithm 3, we have that the regret of SEEDS-UT is upper-bounded by 

O
(
β1/3H 2/3 (SA)1/3 T 2/3

(
ln T SA  

δ

)1/2)
with probability 1 − δ. 

⨅⨆

References 

1. Azar MG, Osband I, Munos R (2017) Minimax regret bounds for reinforcement learning. In: 
International conference on machine learning, PMLR, pp 263–272 

2. Jin C, Allen-Zhu Z, Bubeck S, Jordan MI (2018) Is q-learning provably efficient? In: Advances 
in neural information processing systems, vol 31 

3. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge 
4. Agarwal A, Jiang N, Kakade SM, Sun W (2019) Reinforcement learning: Theory and 

algorithms. CS Department, UW Seattle, Seattle, WA, USA, Technical Report, 32 
5. Jin C, Yang Z, Wang Z, Jordan MI (2020) Provably efficient reinforcement learning with linear 

function approximation. In: Conference on learning theory, PMLR, pp 2137–2143 
6. Zimin A, Neu G (2013) Online learning in episodic markovian decision processes by relative 

entropy policy search. Adv Neural Inf Process Syst 26 
7. Jin C, Jin T, Luo H, Sra S, Yu T (2020) Learning adversarial Markov decision processes with 

bandit feedback and unknown transition. In: International Conference on Machine Learning, 
PMLR, pp 4860–4869



300 M. Shi et al.

8. Lee C-W, Luo H, Wei C-Y, Zhang M (2020) Bias no more: high-probability data-dependent 
regret bounds for adversarial bandits and mdps. Adv Neural Inf Process Syst 33:15522–15533 

9. Rosenberg A, Mansour Y (2019) Online convex optimization in adversarial markov decision 
processes. In: International conference on machine learning, PMLR, pp 5478–5486 

10. Cai Q, Yang Z, Jin C, Wang Z (2020) Provably efficient exploration in policy optimization. In: 
International conference on machine learning, PMLR, pp 1283–1294 

11. Luo H, Wei C-Y, Lee C-W (2021) Policy optimization in adversarial mdps: improved 
exploration via dilated bonuses. In: Adv Neural Inf Process Syst 34:22931–22942 

12. Yu JY, Mannor S (2009) Arbitrarily modulated markov decision processes. In: Proceedings of 
the 48h IEEE conference on decision and control (CDC) held jointly with 2009 28th Chinese 
control conference, IEEE, pp 2946–2953 

13. Cheung WC, Simchi-Levi D, Zhu R (2019) Reinforcement learning under drift. Preprint, 
Available via arXiv:1906.02922 

14. Lykouris T, Simchowitz M, Slivkins A, Sun W (2021) Corruption-robust exploration in 
episodic reinforcement learning. In: Conference on learning theory, PMLR, pp 3242–3245 

15. Rosenberg A, Mansour Y (2019) Online stochastic shortest path with bandit feedback and 
unknown transition function. Adv Neural Inf Process Syst 32 

16. Lee C-W, Luo H, Wei C-Y, Zhang M, Zhang X (2021) Achieving near instance-optimality 
and minimax-optimality in stochastic and adversarial linear bandits simultaneously. In: 
International conference on machine learning, PMLR, pp 6142–6151 

17. Zhao H, Zhou D, Gu Q (2021) Linear contextual bandits with adversarial corruptions. Preprint. 
Available via arXiv:2110.12615 

18. Jin T, Huang L, Luo H (2021) The best of both worlds: stochastic and adversarial episodic 
mdps with unknown transition. Adv Neural Inf Process Syst 34:20491–20502 

19. He J, Zhou D, Zhang T, Gu Q (2022) Nearly optimal algorithms for linear contextual bandits 
with adversarial corruptions. Preprint. Available via arXiv:2205.06811 

20. Theocharous G, Thomas PS, Ghavamzadeh M (2015) Personalized ad recommendation 
systems for life-time value optimization with guarantees. In: Twenty-fourth international joint 
conference on artificial intelligence 

21. Yu C, Liu J, Nemati S, Yin G (2021) Reinforcement learning in healthcare: a survey. In: ACM 
Comput Surv (CSUR) 55(1):1–36 

22. Kober J, Bagnell JA, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot 
Res 32(11):1238–1274 

23. Bennane A (2013) Adaptive educational software by applying reinforcement learning. Inf 
Educ 12(1):13–28 

24. Xu Z, Tang J, Meng J, Zhang W, Wang Y, Liu CH, Yang D (2018) Experience-driven 
networking: a deep reinforcement learning based approach. In: IEEE INFOCOM 2018-IEEE 
conference on computer communications. IEEE, pp 1871–1879 

25. Krishnan S, Yang Z, Goldberg K, Hellerstein J, Stoica I (2018) Learning to optimize join 
queries with deep reinforcement learning. Preprint. Available via arXiv:1808.03196 

26. Lin M, Wierman A, Roytman A, Meyerson A, Andrew LLH (2012) Online optimization with 
switching cost. In: ACM SIGMETRICS Perform Eval Rev 40(3):98–100 

27. Chen N, Comden J, Liu Z, Gandhi A, Wierman A (2016) Using predictions in online 
optimization: looking forward with an eye on the past. In: ACM SIGMETRICS Perform Eval 
Rev 44(1):193–206 

28. Goel G, Lin Y, Sun H, Wierman A (2019) Beyond online balanced descent: an optimal 
algorithm for smoothed online optimization. Adv Neural Inf Process Syst 32 

29. Shi M, Lin X, Fahmy S (2021) Competitive online convex optimization with switching costs 
and ramp constraints. IEEE/ACM Trans Netw 29(2):876–889 

30. Shi M, Lin X, Jiao L (2021) Combining regularization with look-ahead for competitive 
online convex optimization. In: IEEE INFOCOM 2021-IEEE conference on computer 
communications, IEEE, pp 1–10 

31. Friedman J, Linial N (1993) On convex body chasing. Discrete Comput Geom 9(3):293–321



Adversarial Online Reinforcement Learning Under Limited Defender Resources 301

32. Sellke M (2020) Chasing convex bodies optimally. In: Proceedings of the fourteenth annual 
ACM-SIAM symposium on discrete algorithms. SIAM, pp 1509–1518 

33. Bubeck S, Rabani Y, Sellke M (2021) Online multiserver convex chasing and optimization. In: 
Proceedings of the 2021 ACM-SIAM symposium on discrete algorithms (SODA). SIAM, pp 
2093–2104 

34. Borodin A, El-Yaniv R (2005) Online computation and competitive analysis. Cambridge 
University Press, Cambridge 

35. Buchbinder N, Chen S, Naor J (2014) Competitive analysis via regularization. In: Proceedings 
of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms. SIAM, pp 436–444 

36. Lin Y, Goel G, Wierman A (2020) Online optimization with predictions and non-convex losses. 
In: Proc ACM Meas Anal Comput Syst 4(1):1–32 

37. Goel G, Wierman A (2019) An online algorithm for smoothed regression and lqr control. In: 
The 22nd international conference on artificial intelligence and statistics. PMLR, pp 2504– 
2513 

38. Li Y, Qu G, Li N (2020) Online optimization with predictions and switching costs: fast 
algorithms and the fundamental limit. In: IEEE Trans Autom Control 66(10):4761–4768 

39. Lin Y, Hu Y, Shi G, Sun H, Qu G, Wierman A (2021) Perturbation-based regret analysis of 
predictive control in linear time varying systems. Adv Neural Inf Process Syst. 34:5174–5185 

40. Geulen S, Vöcking B, Winkler M (2010) Regret minimization for online buffering problems 
using the weighted majority algorithm. In: Conference on learning theory. Citeseer, pp 132– 
143 

41. Dekel O, Ding J, Koren T, Peres Y (2014) Bandits with switching costs: T 2/3 regret. In: 
Proceedings of the forty-sixth annual ACM symposium on theory of computing, pp 459–467 

42. Arora R, Marinov TV, Mohri M (2019) Bandits with feedback graphs and switching costs. 
Adv Neural Inf Process Syst 32 

43. Shi M, Lin X, Jiao L (2022) Power-of-2-arms for bandit learning with switching costs. In: 
Proceedings of the twenty-third international symposium on theory, algorithmic foundations, 
and protocol design for mobile networks and mobile computing, pp 131–140 

44. Shi M, Liang Y, Shroff N (2023) Near-optimal adversarial reinforcement learning with 
switching costs. In: International conference on learning representations 

45. Bai Y, Xie T, Jiang N, Wang Y-X (2019) Provably efficient q-learning with low switching cost. 
Adv Neural Inf Process Syst 32 

46. Qiao D, Yin M, Min M, Wang Y-X (2022) Sample-efficient reinforcement learning with 
log log(T ) switching cost. Preprint. Available via arXiv:2202.06385 

47. Rakhlin A, Abernethy J, Agarwal A, Bartlett P, Hazan E, Tewari A (2009) Lecture notes on 
online learning draft. Citeseer 

48. Neu G (2015) Explore no more: improved high-probability regret bounds for non-stochastic 
bandits. Adv Neural Inf Process Syst 28 

49. Maurer A, Pontil M (2009) Empirical bernstein bounds and sample variance penalization. In: 
Proceedings of the 22nd annual conference on learning theory



Part IV 
Security in Network-Enabled Applications



Security and Privacy of Augmented 
Reality Systems 

Jiacheng Shang 

1 Introduction 

Augmented Reality (AR) is a system that overlaps virtual (computer-generated) 
content over real-world scenes. By leveraging multiple types of sensors and algo-
rithms, AR systems understand the activities of the AR users and the surrounding 
environment. With the knowledge, AR systems can enhance the perception of AR 
users by adding virtual content and playing audios. The virtual content can be 
either constructive or destructive. Constructive contents refer to virtual objects that 
are additive to the natural environment, and destructive contents are objects that 
mask the partial or whole part of the natural environment perceived by the AR 
user. Therefore, AR systems can provide a more immersive user experience than 
traditional systems (e.g., smartphones and personal computers) and even virtual 
reality, where all contents are virtual. 

Due to these great features, AR devices and applications are becoming increas-
ingly popular among mass consumers, in industry, and even in military training. 
Based on the statistical data from Exploding Topics, the AR market is valued at 
over $31 billion in 2023, and its revenue is expected to exceed $50 billion by 2027 
[27]. In 2023, there are around 1.4 billion active AR user devices, and AR-based 
shopping encourages almost half of all consumers to spend more. Considering the 
increasing revenue of the AR market, many companies have either launched their 
AR applications or produced special AR devices for users. For example, Amazon 
rolled out an AR application for users to view items in their own space [57]. 
Microsoft has released two AR headsets, HoloLens one and HoloLens two, for 
ordinary and business users. Meta also launched their device called Quest Pro, which 
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can be used as both Virtual Reality (VR) and AR devices. AR systems have also 
been used in military training. For example, U.S. Army used Microsoft HoloLens 
to build an AR system that can display a map and have thermal imaging to reveal 
people in the dark [32, 55]. 

While most users and companies focus on delivering more functional features 
to AR users, less attention is paid to the security and privacy of such systems. AR 
systems rely on multiple types of sensors to sense the surrounding environment 
and then use different techniques and algorithms to understand the natural world 
and make decisions. However, recent research shows that AR systems suffer from 
various types of attacks that can either manipulate the AR systems’ decisions or 
disclose the AR users’ private information [72, 87, 89]. For example, Zhang et al. 
showed that it is feasible to spoof the depth sensor, which is widely used on AR 
devices to understand the natural world [89]. Considering AR systems can broadly 
impact the user’s perception, such attacks can be more severe. For example, the 
perception of soldiers can be greatly impacted or even controlled if enemies can 
manipulate specific sensor signals (infrared light and magnetic signals) received by 
the AR device. 

Considering the vulnerability of existing AR systems and this understudied 
research field, it is essential to have a comprehensive study focusing on the security 
and privacy of AR systems. This chapter will first discuss the architecture of AR 
systems and important sensors in existing commercial AR systems. Then, security 
and privacy issues of AR systems will be discussed from three aspects, including 
input security, input privacy, and output security and privacy. Finally, we will discuss 
future research directions for protecting the security and privacy of AR systems. 

2 Augmented Reality System Overview 

This section will focus on general architecture and workflows of existing AR 
system. Also, this section will discuss necessary hardware components in existing 
commercial AR systems. 

2.1 Architecture of AR Systems 

As shown in Fig. 1, generally, and AR system consists of four essential components: 
the AR user, the AR device, the real world, and virtual objects. While using the 
AR device/application, the AR device keeps sensing the AR user or getting input 
from the AR user. For example, an AR device can sense the movement of the AR 
user and get voice commands through a microphone. Also, the AR device leverages 
different types of sensors to understand the physical world that is around the AR 
user. For example, the depth sensor on AR devices can understand the size, shape, 
and depth of real objects in a scene, which enables a more immersive and realistic
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Fig. 1 Architecture of AR 
systems 
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user experience. The information of the AR user and the physical world will then 
be processed either locally on the AR device or offloaded to a remote server for 
processing based on the complexity of the processing job. After the information 
processing, the AR device will have a clear understanding of the AR user and the 
real world, so it will respond to the AR user and overlay corresponding virtual 
objects over the real-world scene. 

2.2 Sensors and Important Components on AR Devices 

As discussed earlier in this chapter, the immersive experience provided by AR 
systems relies on the accurate sensing and intelligent processing of sensor signals. 
This subsection will summarize important hardware components in current AR 
devices. 

2.2.1 Depth Sensor 

In order to deliver a realistic AR experience, AR devices need to understand the 
physical world so they can know where to overlay virtual objects. Therefore, depth 
sensors are widely implemented in current AR devices. For example, Microsoft 
HoloLens 2 leverage the depth sensor to recognize the gestures of the user. A depth 
sensor is used to measure the distance from the AR device to a point in the 3-
dimensional space. Existing depth sensors are commonly based on three techniques: 
stereo vision, time of fight, and structured light. 

Stereo vision-based depth sensors are built based on binocular vision, which is 
also used in human vision systems. The depth information is calculated based on 
the difference in an object’s location as seen by two different sensors or cameras. 
Therefore, stereo vision-based sensors need at least a pair of cameras that have 
sufficient details and a large field of view. Differently, time-of-flight-based sensors 
estimate the depth of a point by measuring the time that is needed for an emitted 
signal to be reflected by the specific point and come back to the depth sensor.
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Structured light-based depth sensors use either laser or light emitting diode (LED) 
light and estimate the distance by measuring the distortions. Time of flight-based 
and structured light-based depth sensors are preferred in current AR devices. 

2.2.2 Camera System and Eye Gaze Sensor 

AR devices must have a group of cameras to ensure the AR system can see what 
the AR user is seeing. Besides being used for regular applications (e.g., video 
recording and video conferencing), the cameras on the AR headsets can be used 
for accurate head tracking, which further enables the head-gaze interaction. Except 
for the visible light cameras, many AR headsets, such as Microsoft HoloLens, use 
a pair of infrared radiation (IR) cameras that record the eyes of the AR user to track 
the gaze. By using the eye gaze sensors, the AR application can understand what 
the focus and intention of the AR user are. 

2.2.3 Motion Sensor 

Motion sensors are a group of sensors that are used to recognize the motion 
of the device itself and are implemented in all AR devices to support the basic 
functionality of AR applications. AR devices usually have three motion sensor 
types: accelerometer, gyroscope, and magnetometer. Besides the headsets, motion 
sensors are also implemented in the remote controllers of some AR devices. For 
example, HTC Vive uses motion sensors to help estimating the hand movement 
trajectory of users. 

2.2.4 Audio System 

Current AR devices have an audio system for audio signal collection and playback. 
For example, Microsoft HoloLens 2 has three microphones for ambient sound 
collection and a separate group of directional microphones to collect the voice of 
the AR user. A pair of loudspeakers are placed on both sides of the device to play 
audio signals back to the user for interaction. For instance, Microsoft HoloLens two 
has three microphone at the front of the device to collect ambient sounds in the 
physical environment and two directional microphones behind the glasses to collect 
the voice of the AR user. 

3 Security and Privacy Concerns of Augmented Reality 

Different types of sensors are the fundamental components for supporting immer-
sive experiences in using AR devices. Figure 2 shows the general pipeline of sensor 
signal processing in AR systems. Both the AR user and the physical environment
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Fig. 2 The processing pipeline of sensor signals in AR systems 

will stimulate the sensor, which is then picked up by the transducer to generate 
analog signals. The analog signals can be first processed within the sensor hardware 
using amplifiers and hardware filters. After that, analog signals are converted into 
digital signals using an analog-to-digital converter (ADC). AR applications acquire 
processed digital signals through the application programming interfaces (APIs) 
provided by the operating systems of the AR devices and perform further processing 
on the digital signals, such as software filters, feature extraction, and classification. 
The data processing in the AR applications can be done either locally on AR devices 
or remotely in the corresponding server of the application. 

From this signal processing chain, we can obtain two important insights. First, 
the correct result or decision of AR systems primarily relies on accurate sensing. If 
attackers can manipulate the sensor signals by controlling the ambient environment, 
the attacker can likely manipulate the final result and decision of the AR application. 
This type of threat is referred to as input security threats of AR. Second, AR 
applications are allowed to gather a group of digital sensor signals from the 
hardware for their functionality. However, not all information in the signals is 
needed by the functionality. Some information in the sensor signals can reveal 
private information of the AR users or other subjects in the environment. This 
type of threat is referred to as input privacy threats of AR. Besides these two 
types of threats observed from the processing chain, AR systems can also suffer 
from different types of threats that target their output, which refers to as output 
security. Since AR systems significantly impact users’ perception, especially visual 
perception, attackers can try to interfere with AR users’ perception by placing 
particular virtual objects at specific locations for malicious purposes. The following 
sections will discuss these three types of threats separately with their threat models, 
found vulnerabilities, and existing defense solutions. 

4 Input Security 

This section will discuss the general threat model of input security of AR systems. 
Moreover, this section will study the security of three necessary inputs in AR 
systems based on recent research in this field.
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4.1 Threat Model 

As discussed in Sect. 3, the functions of AR systems rely on accurate sensing to 
work as expected. In other words, the collected sensor signals should be accurate and 
trustworthy. To attack the input security, attackers will try to manipulate the sensor 
signals by controlling specific signals in the same physical environment where the 
AR user is. As observed from Fig. 2, the sensor signals collected by AR devices 
are impacted by either the physical environment or the AR user. In practice, it is 
tough for attackers to directly control the AR user for manipulating specific sensor 
signals. For example, it is unrealistic for attackers to force the AR user to say some 
malicious voice commands to the AR system. Therefore, input security attackers 
will mostly try to control the ambient signals for manipulating sensor signals. The 
remaining part of this section will summarize existing research revealing security 
vulnerabilities of the input of AR systems and proposed defense solutions. 

4.2 Audio Input Security 

Unlike traditional mobile devices, such as smartphones, AR devices do not have 
a physical input surface for user interactions. In current AR headsets, voice is 
one of the most important interaction methods because it is the natural way for 
communication. For example, HoloLens users can say “Hey Cortana” followed by 
a voice command to give an instruction to the AR system. Besides being used for 
voice commands, the voiceprint can also be used for user authentication so that the 
AR device will only follow the instruction of a specific group of users. 

4.2.1 Vulnerabilities 

However, voice input suffers from various attacks, which can enable attackers to 
inject malicious voice commands into the AR systems remotely. Since human voices 
can be easily exposed to the public (e.g., via videos on social media), attackers can 
easily obtain the voice samples of the AR users and play the voice back to AR 
systems. Here are representative works that reveal the vulnerabilities of voice input. 

Replay Attack Using Inaudible Channels A naive way to conduct a voice replay 
attack is using a loudspeaker. However, such attacks can be easily noticed by 
AR users. To avoid being detected, attackers tend to leverage inaudible channels 
to inject malicious voice commands into the AR systems of victims. The first 
inaudible channel that can be used for such attacks is ultrasound. Most microphones 
on existing AR devices are able to record both audible sounds and inaudible 
sounds and have the non-linearity property in the hardware. With the non-linearity 
property, high-frequency signals received by a microphone can be shifted to lower 
frequencies. For example, before transmitting the audio signals, DolphinAttack [87]
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modulates the malicious voice signals on a new ultrasonic carrier. Due to the non-
linearity property, such high-frequency malicious voice signals are demodulated to 
low frequencies on the microphone. Evaluation results in [87] show that such an 
attack is feasible to launch at a distance of five feet without being noticed. The work 
in [61] further improves the operation range of such attacks to 25 feet by leveraging 
multiple speakers. 

Besides leveraging ultrasound, a recent work called Light Commands [72] shows  
that laser beams can be used to inject malicious voice commands. The insight is that 
the laser beam can induce mechanical vibration of the microphone’s diaphragm. 
Similar to the vibration caused by air pressure, such movements of the microphone’s 
diaphragm are converted to audio signals. Therefore, by modulating the intensity 
of laser beams based on the malicious voice commands, attackers can inject the 
malicious commands into victims’ AR devices by pointing the laser beams at the 
microphone. 

Recent research also shows that parasitic audio electric signals can be used to 
inject voice commands without physically touching the victim device [26, 38, 42]. 
More specifically, The cable wires, such as charging cables or headphone cables, 
can be used as antennas that are under the interference of audio electric signals and 
are subject to front-door and back-door coupling of electromagnetic. Although the 
frequency range of such wire antennas is from 80 MHz to 108 MHz, a radio signal 
that is modulated by the malicious voice command can be well received by the 
microphone hardware and demodulated to a lower frequency due to the non-linear 
property. The operation range of such attacks is usually within one to two meters. 

Voice Recognition Attacks Besides injecting malicious voice commands through 
inaudible channels, attackers can also inject voice commands using audible channels 
and still avoid being detected by AR users. The basic idea of such attacks is to make 
the audible voice commands sound like harmless audios, such as nonsensical or non-
command sounds. However, such harmless audios can either share the same features 
with malicious voice commands or can be wrongly classified by voice recognition 
models, which causes the successful injection of malicious commands. 

Figure 3 shows a general processing pipeline of voice signals. After collecting 
voice signals from microphone hardware, a voice recognition system will perform 
pre-processing (e.g., noise removal and filtering) on the raw signals. Then, different 
features are extracted from the processed voice signals for the following model-
based voice recognition. In voice recognition systems, mel-frequency cepstral 

Fig. 3 A general processing 
pipeline of voice recognition 
system (built based on the 
figure in [78]) 

Pre-processing Feature Extraction 

Model-based voice 
recognitionPost-processing 

Voice signals 

Text of voice 
commands 

Voice recognition System
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coefficients (MFCCs) are commonly used as features as they represent the short-
term power spectrum of audio on a nonlinear mel frequency scale and match with 
human hearing perception in terms of frequency bands. The recognition results then 
go through post-processing and are sent to the operating system or corresponding 
AR application for action. From this processing pipeline, we can gain one crucial 
insight. If two voice signals can have similar features, such as MFCCs, after pre-
processing and feature extraction, it is very likely that they will be recognized as the 
exact text, which causes the same actions performed by AR systems. 

Based on the above idea, various vulnerabilities have been identified that enable 
attackers to inject malicious voice commands into a voice-controllable system (e.g., 
voice assistant of AR systems) [1, 14, 78]. For example, a system called Cocaine 
Noodles [78] proposes an attacking method that aims at generating an attacking 
audio signal that can: (1) retain enough features for making the signal be recognized 
as a malicious voice command and (2) sound like indecipherable noise to human 
beings. Specifically, Cocaine Noodles selects four MFCC parameters and uses the 
tuned MFCC parameters to compute MFCCs of a malicious voice signal. The 
extracted features are then converted back to a new audio signal which can be 
recognized as a malicious command but sounds like noise to human beings due 
to the noise added in the inverse computing. 

Many existing voice recognition systems use machine learning models to predict 
the literal content of voice commands [56]. However, most machine learning models 
are trained with a hidden assumption that training and testing data are generated 
from the same statistical distribution, which can be false in real-world scenarios. 
Recent research in the machine learning security field shows that, by using special 
input called adversarial examples, attackers can cause machine learning models to 
make wrong predictions. An adversarial example is generated by adding adversarial 
perturbation to an instance of data, and the perturbation is constrained to be so 
small that it appears imperceptible to human beings. Inspired by adversarial machine 
learning in computer vision, many works have been proposed to leverage adversarial 
examples to inject malicious voice commands into voice recognition systems 
[7, 16, 17, 47, 83–85]. For example, the work in [7] presents an attack approach that 
can make a neural-network-based speech recognition system fail. Since it is hard for 
attackers to gain enough knowledge of the neural network, the proposed approach 
leverages a genetic algorithm that is gradient-fee for optimization. Evaluation results 
show that the added perturbation is of a small amount that sounds like background 
noise, but it is enough to change the predicted label of an audio clip. A similar 
approach is also proposed in [25] by leveraging Particle Swarm Optimization (PSO) 
algorithm and the fooling gradient method for optimization. Moreover, some recent 
studies show that adversarial examples that are generated for a white-box model 
could be transferred to another black-box models [2, 18, 19]. For instance, Abdullah 
et al. show that [2] perturbations to certain phonemes can cause wrong classification 
across multiple models.
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4.2.2 Defense Solutions 

Existing AR applications run on two types of devices, smartphones and AR 
headsets. Existing research has shown that microphones on smartphones cannot 
defend against voice replay attacks and voice injection attacks due to the design 
of omnidirectional microphones. Different from mobile phones, AR headsets pick 
up the voices of AR users using directional microphones that are under glasses and 
point to the mouth of the user, which means microphones on AR headsets can defend 
against voice replay attacks to some extent. However, directional microphones do 
not perfectly protect AR devices from voice replay attacks due to reflection and 
Diffraction. Therefore, it is essential to have an extra layer of protection to ensure 
the security of voice input on AR devices. Many studies have been done to prevent 
or detect attacks on voice input, and they are summarized as follows. 

Signal Distortion Many works detect the existence of attacks on voice input by 
identifying defective components in audio signals [4, 10, 40]. No matter what attack 
is launched, attackers need to find a way to inject malicious audio signals into victim 
devices, as we discussed earlier in this section. During the injection, distortions can 
be introduced to malicious audio signals, which do not exist at all in legitimate 
audio signals. For example, the deep learning-based model in [40] can accurately 
detect malicious audio signals with an equal error rate of 6.7%. A system called 
Void [4] further reduces the training burden to a single classification model with 
just 97 features and provides an equal error rate of about 8.7%. The work in [10] 
leverages sub-bass over-excitation in the replayed audio signals as the key indicator 
for identifying attacks on voice input. 

Authentication Another group of works detects attacks on voice input by deter-
mining whether the voice clips come from authorized subjects [33]. Such defense 
systems can prevent someone else from using the voice assistant of the victim. The 
basic idea behind such works is to leverage the voiceprint. The voices of different 
people have distinctive patterns of certain voice characteristics in the time-frequency 
domain, and such features can be used to recognize the identity of voice clips. 
However, such a defense strategy can fail when attackers generate synthetic voices 
of the victim using forgery techniques and replay malicious voice clips back to AR 
devices. 

Liveness Detection The objective of liveness detection is to determine whether a 
signal is generated by a live human being, and therefore it is widely used in forgery 
detection. As discussed in this section, attackers must inject malicious audio signals 
using certain hardware through audible or inaudible channels. This fact implies that 
malicious voice clips can be detected by finding features in side channels that do 
not exist or only exist in human-generated signals. When detecting the liveness of 
voice, the system needs to make sure the selected features are complex for attackers 
to forge.
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The first group of features that can be used for voice liveness detection is 
breathing-related features. Humans always breathe when speaking sentences, such 
as voice commands. Therefore, certain breathing-related features can be used as an 
indicator to prove that a voice clip is generated by live speakers. For instance, the 
works in [53, 68, 81] leverage the pop sounds when speaking certain phonemes as 
features to detect the liveness of voices. The system in [82] uses the pressure of air 
flows for liveness detection. 

Moreover, mouth and lip motion is always there for live speakers, and such 
motion is highly correlated with phonemes. Based on this idea, many systems are 
proposed to detect voice liveness using the existence of mouth or lip motion [52, 88]. 
For instance, WiVo [52] uses Wi-Fi sensing to monitor the motion of mouth and 
correlate it with words in voice clips. The work in [88] leverages the speaker and 
microphone on smartphones as a Doppler radar to detect lip motion during speech. 
Besides, the air pressure in the ear canal can also be used to detect voice liveness 
based on the study in [65]. 

Other studies are conducted based on analyzing the key differences between 
human vocal systems and replay devices. For instance, Voicelive [86] shows that 
different phonemes are generated from different locations in the human vocal 
system but come from the same location in loudspeakers. The works in [63, 64] 
show that voice can propagate through the internal body for live speakers, and such 
internal body voice can be collected by a contact microphone that is attached to 
the AR user. By measuring the correlation between the voice signals and internal 
body voice, replay attacks can be detected with high accuracy. Such systems can be 
deployed in current AR headsets by adding an extra contact microphone. 

4.3 Motion Input Security 

Motion sensor signals are essential for supporting immersive AR experiences 
because they are directly impacted by users’ movements. For example, accelerom-
eter and gyroscope can be used to estimate the head orientation of AR users. Magic 
Leap 2 also has motion sensors in the pair of controllers to help provide 6. ◦ of 
tracking. 

4.3.1 Vulnerabilities 

However, similar to audio sensors, the motion sensors in AR devices are also vulner-
able to out-of-band injection attacks. In out-of-band injection attacks, attackers aim 
to change sensor signals without changing the measured quantity itself [29]. Many 
out-of-band injection attacks focus on attacking vibrating structure gyroscope. The 
underlying principle of the vibrating structure gyroscope is that a vibrating object 
tends to continue to vibrate even if the support rotates. Therefore, by measuring 
the Coriolis force on its support, the rate of rotation can be determined. Inspired
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by this principle, attack systems are designed by using acoustic noise to trigger the 
vibration of hardware components of vibrating structure gyroscope. Recent research 
has shown that high-power audio signals that are played near a vibrating structure 
gyroscope can greatly impact the performance of angular velocity measurements 
[70], which can be used in denial-of-service (DoS) attacks. The work in [70] 
finds that some micro-electro-mechanical systems (MEMS) gyroscopes resonate 
at audible and inaudible frequencies. Even with consumer-grade speakers, such 
acoustic noise can effectively change the values of gyroscope readings and further 
cause the drones to fluctuate. Moreover, the air pressure caused by acoustic signals 
can also displace the mass in accelerometer hardware, which can also be leveraged 
to manipulate acceleration readings [76]. 

The work in [80] presents an attack system that can not only degrade the 
performance of motion-based systems but also control the behavior of the victim 
system for a while. Differently, the attack in this work is delivered by changing 
the tonal frequency rather than attenuating the amplitude of digital signals. In their 
experiments, they launched this attack on multiple mixed reality devices, such as 
Oculus Rift CV1, HTC Vive, iPhone 7, and Samsung Galaxy S7. The devices in 
these experiments can either be used as AR devices or share similar hardware 
architecture with existing AR devices. The experimental results demonstrate that 
the proposed attack method can control gyroscope-based functions and degrade 
accelerometer-based functions. The modulated acoustic noise can cause fluctuation 
of virtual scenes on the HTC Vive headset and manipulate the movement of 
controllers of the headset and keep it for a while. Effective manipulation can also 
be observed on other mixed reality devices, and most attempts of manipulation can 
hold for a certain amount of time. 

4.3.2 Defense Solutions 

To defend against out-of-band injection attacks on motion sensors, various 
hardware-based and software-based have been proposed, and their solutions can be 
divided into three categories: hardware protection, sensor redundancy and fusion, 
and anomaly detection. 

Physical Protection This type of defense solution aims at preventing out-of-
band injection attacks at the beginning by using physical isolation and acoustic-
dampening materials. For example, the gyroscope on iPhone 5S is not vulnerable 
due to the compact casing of the hardware circuit [70]. Also, the same work 
proposes to use an additional feedback capacitor that is connected to the sensing 
electrode, which can help tune the resonant frequency and the magnitude of the 
resonance. Moreover, by using foam as isolation material, the insertion loss in sound 
pressure level can reach about 120 dB when the foam is 1 inch thick based on a study 
in [60]. 

Sensor Redundancy and Fusion Some other works propose to remove this 
vulnerability by using more sensor fusion [11, 77, 80] after attacks happen. In terms
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of sensor redundancy, multiple gyroscope sensors with resonance frequencies can 
be used together, so the manipulated sensor signal can be identified by using other 
gyroscope signals as a reference. Other types of sensors can also be used for the 
same sensing job to defend against out-of-band injection attacks. For example, red, 
green, and blue (RGB) and gray-scale cameras on current AR devices can also be 
used to estimate the orientation of the head of the AR user, so injection attacks on 
motion sensors could be identified using sensor fusion algorithms. 

Anomaly Detection Similar to sensor redundancy and fusion, anomaly detection 
focus on detecting the existence of attacks after attackers launch them. Since most 
out-of-band injection attacks on motion sensors use acoustic signals, the existence 
of audio signals of certain frequencies can be suspicious. For example, the work in 
[80] suggests to detect the resonating sound actively with microphones. 

4.4 Depth Input Security 

Depth sensing is essential for making the AR experience more realistic. Even though 
many computer vision algorithms can detect objects in a two-dimensional image, 
the detection can be time-consuming and inflexible, which can cause a virtual 
object to float over a physical object. Depth sensing can conquer this obstacle with 
lower delay and overhead by estimating the point-to-point distance in the three-
dimensional space. Depth sensing can support a wide range of functionalities in 
AR scenarios, including robust object detection and indoor scanning. Depth sensors 
have been widely implemented in current AR devices. For instance, Microsoft 
Hololens 2 uses time-of-flight depth sensors to estimate hand gestures of AR users. 
Both iPhone and iPad devices are equipped with Light Detection and Ranging 
(LiDAR) sensors to support AR experiences. 

4.4.1 Vulnerabilities 

Like other sensors, the data reported by depth sensors is completely impacted by 
the surrounding environment. Therefore, by controlling the ambient environment, 
attackers could be able to degrade the performance of depth sensing on certain 
objects and even manipulate the sensing results. As discussed in Sect. 2, existing 
depth sensing hardware is based on one of three techniques: stereo vision, structured 
light, and time of fight. Stereo vision-based depth sensors can be regarded as two 
RGB cameras. If attackers use strong visible light to illuminate both cameras, the 
differences in the location of an object as seen by two cameras could be wrongly 
calculated, which can largely degrade system performance. Structured light depth 
sensors measure distances by projecting a narrow band of light on a surface, which 
produces a line of illumination that appears distorted from other perspectives. A 
depth map can be constructed based on the distortion from different perspectives.
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Compared with ToF depth sensors, structured light depth sensors usually need more 
calibration and are less robust under sunlight. Among all these three solutions, ToF 
depth sensors are the most popular in current AR systems, and LiDAR sensor is one 
of them. 

LiDAR sensors measure the depth of a point by measuring the time of flight of 
the signal. However, recent studies show that LiDAR sensors suffer from chosen 
pattern injection attacks [13, 30, 73]. In such attacks, attackers first craft a specific 
depth point cloud based on a certain objective (e.g., hiding an object). The crafted 
depth point cloud is then sent to the depth sensing model, which can be a white-box 
or black-box model, for depth estimation. For instance, the work in [13] presents 
a white-box attack on LiDAR sensors. The experimental results show that the 
proposed attack system can generate fake depth points at all of the 16 vertical 
viewing angles and an 8. ◦ horizontal angle. Moreover, the work finds that strong 
and stabler laser pulses are received by the LiDAR sensor when the fake points are 
closer to the center of the depth point cloud. 

Considering depth sensing models in practice are black-box, the works in [30, 73] 
further enhance the attacks by targeting black-box models. However, all the above 
works are offline attacks, which means the fake points are injected directly into the 
depth point cloud without physically using laser beams for injection. To address 
this limitation, the work in [62] conducts a large-scale measure study on LiDAR 
spoofing. Their preliminary experimental results show that LiDAR spoofing attacks 
are feasible with nanosecond-level configuration. 

4.4.2 Defense Solutions 

Various defense solutions are proposed to defend against attacks on depth sensors, 
and their solutions can be summarized into three categories: detection, mitigation, 
and randomization-based solutions. 

Detection Defense solutions in this category aim at detecting attacks right after 
the attacks are launched. For example, CARLO proposed in [73] can detect depth 
spoofing by measuring the ratio of depth points in different areas. STAnDS in [34] is  
also designed to detect sensor attacks on depth sensors based on anomaly detection. 
The work in [6] aims at detecting LiDAR spoofing attacks using a decision tree 
for classification. However, such detection works are based on certain assumptions. 
When the assumptions are false, their performance could degrade. For instance, 
CARLO can only work for autonomous driving scenarios. 

Mitigation Different from detection solutions, mitigation solutions focus on reduc-
ing the impacts of attacks or reducing the uncertainty of the system [36, 58, 67]. The 
work in [36] presents a solution using Marzullo’s sensor fusion algorithm with an 
assumption that the total number of unreliable sensors is smaller than half of the 
number of all sensors. However, this assumption can be false if attackers have the 
ability to spoof multiple sensors at the same time. Another work in [67] suggests
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reducing the receiving angle of LiDAR signals, but this defense strategy is not 
evaluated in a real testbed. 

Randomization Existing LiDAR sensors generate signal pulses at a fixed rate. 
The key idea behind the randomization-based defense is to add randomness to 
signal pulse generation [58, 67]. As long as attackers do not know the pattern of 
how signals are generated, the success rate of attacks can be largely reduced. For 
instance, the work in [58] suggests varying the pulse rate or skipping a random 
number of pulses. However, this solution relies on high-frequency pulse generation 
provided by the sensors. Otherwise, the resolution of the depth cloud can be 
impacted. 

5 Input Privacy 

This section will introduce the privacy vulnerabilities in the input of AR devices and 
show how attackers can infer sensitive or behavioral information of AR users. 

5.1 Threat Model 

The operating systems on existing AR devices enable AR applications to request 
certain sensor data. For most AR devices, the requested digital signals will be 
handed to AR applications in the raw form. However, raw sensor signals contain 
rich information, which includes not only that needed for certain functions in AR 
applications but also extra information about the physical world. This fact gives 
attackers opportunities to infer sensitive or personal information from the raw sensor 
signals. The capabilities of input privacy attackers can be modeled as follows: (1) 
Attackers can install malware or malicious AR application on the device of the 
victim. (2) Attackers acquire sensor signals from the API provided by the operating 
system of AR devices. (3) The sensor signals can be analyzed either locally or 
remotely to infer sensitive information about the AR user or the surrounding 
physical space. For some sensors on AR devices, it is effortless for users to think 
of privacy issues in certain scenarios. For example, AR users may be concerned 
about visual privacy (including both depth and camera information) in private or 
sensitive scenarios. However, most users are less aware of the privacy issue in 
public areas (e.g., using cameras on the street) or when using sensors that they 
believe are not sensitive. In the remainder of this section, I will introduce existing 
research on revealing privacy issues on the input of AR devices and corresponding 
countermeasures.
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Fig. 4 An example to show 
the bystander privacy 
problem in AR world 
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5.2 Bystander Privacy 

In the AR use case, there are three types of users: AR user, subject, and bystander. 
The AR user is the person wearing the AR device, and the subject is the person 
the AR user is interacting with. Bystanders can be any other people who are in the 
same physical space as the AR user and subject. The bystander privacy problem 
can arise when the data (e.g., images and videos) of a bystander that can be used to 
infer sensitive information is collected without the consent of the bystander. Figure 4 
illustrates a bystander privacy problem in the hospital. The nurse is using the camera 
on the AR headset to log and verify the information of a subject who is a patient 
already giving consent to be part of the data collection. At the back of the subject, 
there are a few bystanders who do not sign the consent form but still appear in the 
camera frames, which potentially causes information leakage. 

The bystander privacy problem is not novel and has been there since cameras 
are implemented on personal devices. However, the bystander privacy problem is 
more challenging in AR scenarios. In the use case of smartphones, bystanders 
could be aware of being recorded because of the relatively narrow field of view 
(FoV) of cameras. In AR scenarios, the cameras are always on and can record the 
surroundings with a much greater FoV, which makes it hard for bystanders to know 
whether they are being recorded and how their visual information will be used. In 
order to fight against the bystander privacy problem, various systems have been 
proposed, and their solutions can be classified into two groups: explicit solutions 
and implicit solutions. 

5.2.1 Explicit Solutions 

Explicit solutions request the user or the bystanders to perform explicit actions to 
protect bystander privacy. The works in [3, 45, 69] assume both user and bystanders 
use their system to ensure privacy protection. In these systems, bystanders need to 
upload their pictures and contract their privacy profiles or actively send a blurring
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request to the user. However, such systems impose a significant burden on the user 
and bystanders, which largely reduces the usability of the system. Moreover, since 
all participants need to subscribe to the same service, the scalability can be very 
limited, and bystanders who do not enroll will be left unprotected. Also, the above 
most explicit solutions are based on a client-server model or rely on peer-to-peer 
communications, which could create another attack surface for attackers to break 
bystander privacy protection. Another system, LensCap [35], is built on top of 
split-process access control in order to prevent attackers from offloading private 
video frames to a remote server. Specifically, LensCap splits the video frame access 
and network access into two separate processes. If the network access attempts to 
access visual data, the visual data needs to be monitored and approved by the user. 
However, LensCap does not prevent all bystander privacy problems. For example, 
the malware can still analyze video frames locally on the device without accessing 
the network. Also, the protection of bystanders’ visual data totally relies on a 
different participant, the user of the device, which can also cause potential privacy 
problems. 

5.2.2 Implicit Solutions 

To address the limitations of explicit solutions, many implicit solutions are proposed 
to reduce the efforts of users and bystanders [21–23, 31] by identifying and blurring 
bystanders in the frames. Different from explicit solutions, they leverage various 
features that are extracted from video frames to determine whether a person is 
a subject or a bystander and therefore reduce the effort from both AR users and 
bystanders. However, these works still have two limitations. First, these implicit 
systems can have degraded performance when the behaviors of bystanders differ 
a lot from those in the training dataset. For example, some works use the gaze 
direction of a person as a key feature with an assumption that only the subject 
will look at the user, which is not always true in practice. Second, the computation 
overhead of these solutions is relatively high, which makes real-time on-board 
processing impossible. Recently, a system called BystandAR [20] is proposed to 
address the limitations of existing implicit solutions. Different from using features 
of bystanders, BystandAR leverages visual concentration and the presence of the 
conversation between the AR user and the subject as two key features to identify 
bystanders. Experiments on Microsoft HoloLens 2 show that BystandAR can 
accurately identify bystanders and can run on a device without offloading processing 
tasks with an average frame rate of 52.6 frames per second. 

5.3 Location Privacy 

The location information of AR devices can leak the movements of AR users. Such 
information can also be combined with other side-channel information to infer more
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private and sensitive information about users, such as habits, home addresses, and 
employment. Existing AR devices protect location privacy by leveraging permission 
management systems. Applications need to request location permission from the 
user before being allowed to acquire location data from the sensor. However, recent 
research shows that the location of the AR devices can be leaked through the 
side channel information [66, 74]. For example, the study in [74] shows that the 
location information can be inferred by attackers based on the signal exchange 
in the fifth generation of mobile communications network (5G). Also, a system 
called ARSpy [66] proposes a strategy to enable attackers to estimate the real-time 
location of AR devices by monitoring network traffic. The basic idea behind this 
work is that multi-player and location-based AR applications need to fetch AR 
content from content servers based on the geolocation of AR devices. The file 
sizes of AR contents are usually relatively large, which makes the downloading 
create notable patterns in network throughput. Moreover, many multi-player and 
location-based AR applications allow their users to “place” AR content at certain 
geolocation. Therefore, by placing AR contents with different sizes at different 
locations, attackers can estimate the location of the user by monitoring the network 
throughput based on pattern matching. 

To defend against the above attacks, several countermeasures, including more 
secure protocols for 5G, are proposed but still need to be evaluated in a real 
testbed. For example, the work in [66] suggests AR software development kit(SDK) 
providers and developers should deploy and maintain an active cache with variable 
size to store AR contents. This work also suggests further limiting the permission 
control on sensor data that is regarded as less sensitive, such as the network 
throughput of an application. 

5.4 Gaze Privacy 

Eye gaze is important data that reflects the visual perception and behaviors of AR 
users. Existing sensor hardware and processing software can support accurate and 
lightweight eye gaze measurements, which then supports gaze-based interaction 
in current AR headsets. Existing eye tracking systems can measure multiple 
types of eye movements and behaviors, including fixations, saccades, pursuit 
eye movements, blink duration, blink frequency, ocular microtremors, pupil size, 
and pupil reactivity, but not all of them are available to application developers. 
For example, the eye-tracking API of HoloLens 2 can provide what the user is 
looking at as a single eye-gaze ray (gaze origin and direction) at approximately 30 
FPS. However, even with limited gaze-related information, attackers can still infer 
sensitive information about AR users.
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5.4.1 Identification 

Based on the study in [54], the eye movement in response to a given stimulus is 
highly individual. Moreover, such individual characteristics can exist in a reliable 
way over time [8]. Based on these facts, many studies have shown that the biometric 
features in eye gaze can be used to identify users [9, 39, 48, 51, 75], especially 
when stimulus can be controlled. For instance, DeepEyedentificationLive [51] 
successfully uses a convolutional neural network to estimate the identity of eye gaze 
with controlled stimulus. The work in [48] also proposes a user identification system 
based on the eye gaze by leveraging two moving stimulus. Their experimental 
results show that the identification accuracy can be up to 75% for an explainable 
algorithm and 100% for a deep learning approach. These works imply it is possible 
for malicious AR application to infer who is using the AR headsets by showing 
moving virtual objects and monitoring the eye gaze. 

5.4.2 Preferences and Knowledgeability 

Since eye gaze is a reflection of physiological activities, visual focuses can also 
reveal the likes and dislikes of AR users. Malicious AR applications can create 
heat maps by aggregating the gaze trajectory samples to recognize the areas that 
the AR user is interested in [59]. For example, a prediction model based on eye 
tracking is proposed to infer the interest of a user from the non-click actions [46]. 
The experimental results show that the system can infer the interceded application 
of the user on Google Play Store with an accuracy of 90.32%. Also, the work in 
[15] presents a system to predict human knowledgeability from eye gaze where 
knowledgeability is represented by a binary value and associated with the user’s 
feel of knowing. 

5.4.3 Defense Solutions 

The studies on defending against privacy leakage in eye gaze [12, 28, 41, 49, 50, 71] 
are still limited. Liebling et al. list future research directions for protecting eye gaze 
in [49], including allowing for self-introspection, using abstraction for gaze data, 
adding noise before passing it down to applications, and leveraging physical barriers 
against eavesdropping. Based on these ideas, the work in [71] proposes a differential 
privacy-based defense method by adding noise to eye gaze data to disable gazed-
based user identification. At the same time, the added noise will not impact gazed-
based functions, such as visual attention recognition. The work in [28] achieves gaze 
protection by leveraging reinforcement learning for eye-tracking data manipulation. 
The new AR headset of Apple also presents their solutions for protecting eye input: 
“Eye input is not shared with Apple, third-party apps, or websites. Only your final 
selections are transmitted when you tap your fingers together.”
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6 Output Safety, Security, and Privacy 

As the final step in the process, AR applications need to render virtual objects 
over real-world scenes with the APIs provided by operating systems. The rendered 
objects can be anchored and non-anchored in the real world. Anchored objects are 
those that stay at the same position and orientation in space, and non-anchored 
virtual objects do not have a fixed position or orientation. Such rendering processes 
should be well managed. Otherwise, safety and privacy issues may arise. In 
this section, I will introduce the vulnerabilities in terms of output control and 
information leakage through output rendering. Existing countermeasures are then 
discussed. 

6.1 Output Safety and Security 

Since AR systems are used to augment the perception of users, virtual object 
rendering without management can cause various safety problems. For example, 
malicious applications can generate a virtual object that looks very similar to a 
stop sign in AR driving scenarios. Also, high-brightness virtual objects can block 
the sight of AR users on certain real-world objects, which could further cause 
security issues such as property security. These facts imply that an output control 
policy is necessary to guide AR applications for their rendering behaviors. A good 
output control policy should be able to achieve management of rendering priority, 
intelligent arrangement and occlusion, and other features to defend against attacks 
on AR output. 

However, output control policies on existing AR devices are missing or very 
loose. Most operating systems of AR devices allow AR applications to place virtual 
objects at any position in the 3D world without any restrictions. To address this 
issue, several works have been proposed in recent years [5, 43, 44]. For example, the 
study in [43] points out two important design axes for managing visual AR outputs: 
flexibility and control. Flexibility means the ability of legitimate AR applications to 
display their AR contents, and control refers to the ability of the operating system 
to defend against malicious or undeniable AR content. Based on these two axes, 
they propose a novel model to manage visual AR contents at the granularity of AR 
objects rather than windows. In their follow-up work, they present a more detailed 
complete output policy control model called Arya [44]. Besides introducing new 
control policies, Arya also uses guidelines from HoloLens developer guidelines 
and the U.S. Department of Transportation guidelines. Moreover, Arya develops 
an explicitly restricted policy framework that requires policies to combine options 
from a well-defined set of parameterized conditions and mechanisms. In addition, 
the output policy control model has an issue for policy enforcement when those 
policies depend on relationships between objects. For example, a virtual object 
that does not block anything may block a walking person in future frames due to
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the movements. Arya can address the issues by recognizing objects using various 
sensors and checking the enforcement of policies per frame. The work in [5] further 
improves the performance of policy control based on the weaknesses of Arya. In 
unknown and dynamic scenarios, this work leverages reinforcement learning to 
make optimal decisions for output control and policy enforcement. To prevent on-
board computation overhead in Arya, this work offloads computation tasks to a local 
edge server. 

6.2 Output Privacy 

An ideal output control model should also be privacy-preserving. Here I use the 
same example in [24] to show the privacy issue. Assume the user is using an 
AR application that aims to project a screen to a flat surface, such as a wall. To 
verify if the wall is flat enough for such projection, the AR application can request 
camera data to determine whether there is anything on the wall that impacts the 
quality of the projection. This request seems reasonable but can leak information 
(e.g., the shape of objects on the wall) of real-world objects on the wall, even if 
the camera data is abstracted before being transmitted to AR applications. Existing 
research on protecting privacy during the output process is very limited. Vilk et al. 
present a solution to this issue in [79] with three types of abstraction: room skeleton, 
detection sandbox, and satellite screens. The room skeleton abstraction allows AR 
applications to place virtual contents based on the physical dimension and locations 
of renderable surfaces. The detection sandbox abstraction can enable applications 
to place contents near real-world objects without revealing the physical presence 
of objects. The satellite screens abstraction lets applications share contents across 
multiple AR devices. 

7 Opportunities and Future Directions 

This section discusses some opportunities and future directions of research on the 
security and privacy of AR systems. 

Security of Depth Sensors Although there is much research on the security of 
depth sensors, some questions still need to be answered. First, as discussed in 
Sect. 4.4, existing research on depth sensor security only focuses on autonomous 
vehicle scenarios where depth sensors are mostly used for detecting big objects 
and measuring distances. It is still unclear how these attack methods impact 
the functionalities of AR devices that use depth sensing. One of the possible 
research opportunities is to study if attackers can leverage similar attack methods 
to manipulate depth sensing on AR headsets, such as interfering with virtual object 
rendering and spoofing gesture recognition. Second, most existing depth sensor
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spoofing works target LiDAR sensors on autonomous vehicles. However, it is not 
clear whether attacks on such vehicle LiDAR sensors can also work against LiDAR 
sensors on AR devices. It is also not clear whether such attack ideas are also feasible 
against other ToF depth sensors on existing AR headsets. More studies need to be 
conducted to answer these questions. 

Fast and Robust Sensor Attack Defense Most existing defense solutions for 
AR systems are only designed for attacks on a specific sensor. Considering the 
number of sensors on AR devices, a separate defense software for each sensor 
could introduce much computation overhead to the devices. Several sensor fusion-
based solutions are presented in [36, 58, 67]. However, these systems are designed 
for autonomous vehicles, so it is not clear whether they can protect AR systems 
well. Therefore, a more generalized defense system needs to be designed to 
detect or mitigate attacks on various types of sensors accurately. Moreover, such 
a defense system needs to execute fast and robustly. Most existing AR devices are 
subject to battery constraints. For example, Apple Vision Pro can only support AR 
experience for about 2 hours. The execution of defense software could make this 
situation worse. Besides making the defense system lightweight, another research 
opportunity is to offload the computation to an edge server. However, offloading 
could create another attack surface for attackers if vulnerabilities exist in network 
communication or in edge servers. More research needs to be done to answer these 
questions. 

Privacy of Vision Data Protecting sensitive information in camera and depth 
sensor data can also be a future research opportunity. Most existing defense 
solutions only target a specific scenario and can fail to protect vision data in a 
more generalized situation. The work in [37] presents a protection system that 
aims to protect camera data for a more generalized scenario with computer vision 
techniques. Their system performs abstraction on the objects in camera frames based 
on the privacy level which users specify. However, it is not clear enough to users 
how many details of an object will be reserved under each privacy level. A wrongly 
set privacy level could lead to low usability or privacy leakage. One possible future 
research direction is to build an implicit defense system that can protect all types of 
vision data in an intelligent way based on the scenario, behaviors of the user, and 
the nature of application functions. 

8 Conclusion 

This chapter gives a literature review on the security and privacy issues of AR 
systems, including a systematic review of AR systems, critical vulnerabilities, 
existing defense solutions, and future research directions. In terms of input security, 
this chapter gives a detailed discussion of security research on audio input, motion 
sensors, and depth sensing. In addition, bystander privacy, location privacy, and 
gaze privacy are reviewed under input privacy, and output security and privacy



326 J. Shang

are discussed in the end. This literature review shows that the existing research on 
protection AR devices is still minimal. More studies must be done for protection 
before the device becomes commonplace to the average consumer. 
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Securing Augmented Reality Applications 

Si Chen and Jie Wu 

1 Introduction 

With the advent of digital advancements, our experiences of reality are increasingly 
becoming intertwined with technology. On the forefront of these developments 
stands Augmented Reality (AR) [1], a technology that overlays digital information 
on real-world elements. From healthcare to education to entertainment, AR has 
permeated numerous fields. Yet, as we stand on the brink of this digital revolution, 
concerns around security loom large. Intrusive invasions via sensors, cyber attacks, 
and data privacy breaches present noteworthy challenges in the AR landscape. It is 
in this critical juncture that Artificial Intelligence and Machine Learning (AI/ML) 
surface as promising contributors. AI/ML, known for their prowess in learning 
from data and improving upon experiences, could hold the key to securing AR 
applications. This chapter delves deep into the security concerns of AR applications, 
analyzes the potential of AI/ML in combatting these threats, and sheds light on 
finding the delicate balance between security necessities and offering an advanced 
user experience. 
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1.1 Background 

Augmented Reality (AR), a pioneering technology that superimposes digitally 
generated information onto a user’s perception of the real world, is increasingly 
being adopted across a variety of applications [2]. This revolutionary medium 
blurs the boundaries between the physical and virtual worlds, augmenting our 
perception and interaction with the real environment. It is considered one of the 
most sophisticated technologies in virtual reality research and has proven effective 
as a learning medium [3]. 

In the field of education, AR has been used to make challenging concepts visible 
and accessible to novices. For instance, it has been used to teach molecular geometry 
in chemistry, where students can interact with virtual models of molecules [3]. 
Similarly, in physics, AR has been used to expose learners to the invisible physics 
involved in audio speakers, such as the shape of magnetic fields and the relationships 
between electricity and magnetism [4]. 

AR has also found significant applications in the tourism and hospitality industry, 
where it is used for planning, marketing, and education [5]. In the industrial 
engineering domain, AR has been used to support remote maintenance and repair 
operations, providing real-time feedback from the operator’s field of view [6]. 

1.1.1 The Early Years: A Detailed Overview 

Augmented Reality (AR), a technology that overlays digital information onto 
the physical world, has its roots in the early 1990s. During this period, the 
first functional AR systems were developed, providing immersive mixed reality 
experiences for users. These pioneering systems [7] laid the groundwork for the 
sophisticated AR technologies we see today. 

One of the earliest and most notable examples of AR technology is the Virtual 
Fixtures system [8, 9], which was developed in 1992 at the U.S. Air Force’s 
Armstrong Laboratory. This groundbreaking system was a significant milestone in 
the evolution of AR technology, as it demonstrated the potential of AR to enhance 
human performance in a tangible and practical way. 

The Virtual Fixtures system worked by overlaying virtual objects onto a real-
world environment. This was achieved through the use of a head-mounted display 
(HMD) and spatially registered graphics. The user would see the real world around 
them, but with the addition of virtual objects that appeared to exist within the 
same space. These virtual objects, or “fixtures”, could be manipulated by the user, 
providing a sense of interaction with the virtual environment. 

The primary goal of the Virtual Fixtures system was to enhance the user’s 
perception and performance in manual tasks. By overlaying virtual objects onto the 
real world, the system could provide visual guidance, improve spatial awareness, 
and facilitate complex task completion. The success of the Virtual Fixtures system 
demonstrated the potential of AR technology to enhance human capabilities, paving 
the way for future developments in the field.
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In conclusion, the early 1990s marked a significant period in the history of 
AR technology. The development of the Virtual Fixtures system at the U.S. Air 
Force’s Armstrong Laboratory demonstrated the potential of AR to enhance human 
performance, setting the stage for the advanced AR technologies we see today. 

1.1.2 Mainstream Adoption: An In-depth Examination 

The journey of Augmented Reality (AR) towards mainstream adoption began in 
earnest in the 2000s, a period marked by significant advancements in technology and 
a growing recognition of the potential applications of AR [10] in various sectors. 

One of the earliest instances of AR gaining traction in the mainstream was 
through its application in the tourism industry. Developers began creating AR appli-
cations specifically designed for tourism [11] , providing a novel way for travelers 
to engage with their surroundings. These applications worked by overlaying digital 
information, such as historical facts, points of interest, and directions, onto the 
real-world view of the user. This not only enhanced the user’s understanding of 
various tourist sites but also enriched their overall travel experience by providing an 
interactive and immersive way to explore new places. 

As the decade progressed, AR technology began to find its way into commercial 
applications, particularly in the entertainment and gaming industries. This was a 
significant development, as it marked the first time AR was used in a mass-market 
context, reaching a wide audience of consumers. 

A notable example of this was the introduction of AR games, which combined 
the real world with virtual elements to create engaging and immersive gaming 
experiences. Among these, Pokémon Go stands out as a particularly successful 
instance of AR gaming. Launched in 2016, Pokémon Go used AR technology to 
overlay virtual creatures, known as Pokémon, onto the real-world environment. 
Players could then interact with these creatures through their mobile devices, 
creating a gaming experience that was both novel and engaging. 

The success of Pokémon Go demonstrated the potential of AR to create 
immersive experiences that could captivate a mass audience. It also served as a 
powerful example of how AR could be integrated into everyday life, contributing 
significantly to the mainstreaming of AR technology. 

In summary, the 2000s marked a pivotal period in the journey of AR towards 
mainstream adoption. The development of AR applications for tourism and the 
introduction of AR games like Pokémon Go demonstrated the wide-ranging poten-
tial of AR, paving the way for its integration into various sectors and its acceptance 
by a broad consumer base. 

1.1.3 Recent Developments: A Comprehensive Analysis 

In the past few years, Augmented Reality (AR) has seen a significant expansion in its 
applications across a multitude of industries, driven by advancements in technology
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and a growing recognition of its potential to enhance various aspects of human 
experience. 

In the field of education, AR has emerged as a powerful tool for creating 
interactive learning experiences. By scanning or viewing an image with a mobile 
device, students can access AR content that brings learning materials to life. 
This can include 3D models, animations, or additional information that enhances 
understanding and engagement with the subject matter. The use of AR in education 
has the potential to transform traditional learning methods, making education more 
engaging, interactive, and effective. 

The medical field [12], has also seen the integration of AR technology, partic-
ularly in surgical procedures. AR has been used to enhance visualization during 
surgeries allowing surgeons to overlay digital images onto the real-world view of 
the patient’s body. This can provide valuable guidance during complex procedures, 
improving precision and potentially leading to better surgical outcomes. 

In the entertainment industry, AR has been used to create immersive experiences 
that blend the real and virtual worlds. This has been particularly evident in the 
gaming industry, where AR games create interactive experiences that integrate 
virtual elements into the player’s real-world environment. However, the use of AR 
in entertainment extends beyond gaming, with applications in film, television, and 
live events. 

The development and proliferation of AR technology have been facilitated by 
advancements in related fields, such as computer vision and object recognition. 
These technologies have made it possible to overlay digital information onto the real 
world in real-time, creating an interactive and digitally manipulated environment. 
Computer vision enables devices to understand and interpret the real-world environ-
ment, while object recognition allows for the identification and tracking of specific 
objects within that environment. Together, these technologies form the backbone of 
AR, enabling the creation of immersive and interactive AR experiences. 

In conclusion, recent developments in AR technology have seen its application 
expand across various industries, from education and medicine to entertainment. 
These advancements, coupled with developments in related fields such as computer 
vision and object recognition, have facilitated the creation of interactive and 
immersive AR experiences, marking a significant step forward in the evolution of 
this technology. 

1.1.4 Future Trends 

As AR technology continues to evolve, it is expected to find even more applications, 
transforming the way we learn, work, and interact with our environment. However, 
it’s important to note that most users and application developers often overlook the 
potential risk of location privacy leakage in their applications. Unlike traditional 
smartphones where users have control over when to turn on or off the sensors



Securing Augmented Reality Applications 335

Fig. 1 Screenshots for mobile AR apps 

and applications, AR devices continuously sense the environment through multiple 
sensors. If these sensors are exploited by an attacker, they could pose a severe threat 
to user privacy [13]. 

Mobile augmented reality (mobile AR), an emerging class of AR systems, is 
nearing commercial feasibility [14]. As a form of human-computer interface in 
cyber-physical systems, mobile AR systems form a conduit between the human 
and physical world through the cyber realm. With the rising shift towards hands-
free wearable devices such as head-mounted displays and smart glasses, mobile AR 
is evolving into a novel information-delivery paradigm [15]. Unlike conventional 
smartphones which can be easily moved in and out of a user’s field of vision, 
mobile AR continuously interacts with the environment and receives input from 
the user’s field of vision via video, audio, and other sensors [16] (e.g., Fig. 1). Both 
cyber and physical attacks against mobile AR systems can lead to malfunction and 
subsequently disruption or failure of the mobile AR system. Therefore, it is vital to 
develop a robust security framework that is specifically tailored for mobile AR [17]. 

The future of AR is promising, with ongoing research and development aimed 
at improving the technology’s capabilities and finding new applications. As AR 
technology continues to evolve, it is expected to become an integral part of our 
daily lives, changing the way we interact with the world around us.
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1.2 The Imperative of Security in Augmented Reality (AR) 
Applications 

As Augmented Reality (AR) technologies mature and permeate various industries, 
the necessity to safeguard these systems against harmful or disruptive visual outputs, 
generated by malicious or defective applications, has become critical. This is 
especially significant given that AR users often interact within ecosystems of other 
users, thereby amplifying the interconnected and extensive risks of AR [18] (Fig. 2). 

AR techniques have been employed in the security sector to facilitate infor-
mation exchange and provide immediate situational awareness [19]. However, the 
persistent interaction of AR with the user’s environment and sensory field through 
video, audio, and other sensors, introduces substantial security, privacy, and safety 
issues [20]. For example, AR applications may unintentionally expose sensitive 
information about the user’s environment or behavior, leading to privacy violations. 
Furthermore, AR applications can be manipulated to generate deceptive or harmful 
visual outputs, such as concealing real-world objects or producing distracting or 
misleading visual cues [21]. 

To mitigate these issues, researchers have suggested the implementation of 
adaptive policies to secure visual output in AR systems using deep reinforcement 
learning. These policies intelligently reposition AR content to minimize obstruction 
of real-world objects, while preserving a satisfactory user experience. This method 

Fig. 2 Architecture of a standard AR application
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employs a local fog computing node, which conducts training simulations to 
autonomously learn an appropriate policy for filtering potentially malicious or 
distracting content generated by an application [22]. 

Additionally, the fusion of AR with other emerging technologies like the Internet 
of Things (IoT) presents opportunities for developing innovative systems related 
to industrial safety and security. For instance, AR can be utilized for real-time 
monitoring of mechanical structures, enhancing the safety of the work environment 
[23]. In a specific instance, AR was employed to monitor the subsidence of a rock 
salt mine, providing real-time feedback and enhancing the safety of the mining 
operations [24]. 

In summary, the significance of security in AR applications is undeniable. As AR 
technologies continue to progress and become more ingrained in our daily lives, it 
is essential to address the unique security challenges they pose to ensure a safe and 
secure user experience. 

The security of a conventional mobile system is typically associated with system 
components (e.g., software and firmware), or software security approaches such as 
control flow integrity (CFI), memory isolation, and hardening. Existing solutions are 
effective in defending against attacks initiated via a cyber vector such as program 
vulnerability exploitation with cyber payloads, including injected Trojan code and 
ROP. However, the unique blend of continuous GPS sensing, high-volume visual 
data capturing, and outsourced image processing in AR systems introduces several 
new categories of threats. For defending against cyber attacks in AR systems, we 
identify six types of threats: 

• Privacy Concerns, Personal and Environmental Data Exposure: AR systems 
can pose privacy risks as they rely on the continuous collection of sensor and 
biometric data about users and their environment. Data such as user location, 
viewing direction, facial expressions, and even physiological responses to differ-
ent stimuli can be exploited by malicious attackers and intrusive advertisers. 

• Advertisements and their Drawbacks: The capability of AR systems to 
superimpose the real world with virtual objects can be leveraged by advertisers, 
often excessively. Intrusive advertisements in a user’s personal space can be 
uncomfortable, even as they generate revenue for application developers. Fur-
thermore, fraudulent advertisement displays could potentially lead to phishing 
attacks. 

• Impact of Technology Failure: AR systems can expose users to additional risks 
in the event of technology failure or denial of service. In critical applications, 
such as AR-assisted surgeries or AR-based remote machinery operation, tech-
nology failure could have severe consequences. 

• Diverse User Susceptibility: Different user groups may have distinct vulner-
abilities when interacting with AR technologies. Children, medical patients, 
and disabled individuals may not fully understand the implications of their 
interactions in the AR space, making them susceptible to manipulation and harm. 

• Unanticipated Societal Impact: The advent of AR technologies can instigate 
societal changes that we may not fully anticipate at present. The impact of
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these changes on user safety, privacy, and security needs to be considered and 
discussed. 

• Limitations due to Security Measures: While security measures are essential 
for any technology, an overemphasis on these often leads to limiting some 
desirable functionalities of the AR systems. Understanding and striking a balance 
between security requirements and feature offerings is crucial for acceptance and 
adoption of these technologies. 

1.3 Leveraging Artificial Intelligence and Machine Learning 
for Enhanced Security in Augmented Reality Systems 

The potential of Artificial Intelligence (AI) and Machine Learning (ML) in enhanc-
ing the security of Augmented Reality (AR) systems is immense. As AR tech-
nologies continue to evolve and find widespread adoption across various sectors, 
ensuring the security of such systems against potentially harmful or distract-
ing visual output produced by malicious or bug-ridden applications has become 
paramount. This is particularly important considering that AR users will not always 
use the technology in isolation, but also in ecosystems of other users, making the 
risks of AR largely interconnected and far-reaching. 

Two features make side channel attacks in AR a critical problem. First, unlike 
smartphones where users can control when to turn on the sensors and applications, 
AR is continuously getting input from the environment through video, audio, 
and other sensors, acquiring both real and malicious input [21]. Second, current 
Software Development Kits (SDKs) do not have a library that focuses on protecting 
end users’ privacy due to the side channel attack. A thorough understanding of the 
impact of side channel leakage can immensely benefit national cyber-security in the 
future. 

AI and ML have shown great promise in addressing these challenges. For 
instance, deep learning has been used to detect routing attacks in the Internet of 
Things (IoT), a technology that is often integrated with AR for enhanced user 
experiences [25]. Furthermore, machine learning techniques have been applied to 
improve the security of AR applications by identifying and mitigating potential 
threats [26]. 

The potential of Artificial Intelligence (AI) and Machine Learning (ML) in 
enhancing the security of Augmented Reality (AR) systems is immense. As AR 
technologies continue to evolve and find widespread adoption across various 
sectors, ensuring the security of such systems against potentially harmful or 
distracting visual output produced by malicious or bug-ridden applications has 
become paramount. This is particularly important considering that AR users will 
not always use the technology in isolation, but also in ecosystems of other users, 
making the risks of AR largely interconnected and far-reaching. 

In their paper, “Security and Privacy in Augmented Reality: Current Trends and 
Future Challenges,” Lebeck et al. [27] discuss the potential security and privacy
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challenges in AR applications. The authors highlight the importance of developing 
robust security frameworks to protect against potential threats. They argue that as 
AR technologies continue to advance and become more integrated into our daily 
lives, it is crucial to address the unique security challenges they present to ensure a 
safe and secure user experience. 

Lukosch et al. [28] discuss how AR and machine learning can be used to enhance 
information security in their paper “Augmented Reality and Machine Learning for 
Improved Information Security.” They propose an AR system that uses machine 
learning algorithms to detect and prevent security threats. This approach leverages 
the power of machine learning to analyze patterns and predict potential threats, 
thereby enhancing the security of AR applications. 

In “Deep Reinforcement Learning for Secure Visual Output in Augmented 
Reality Systems,” Ahn et al. [22] present a novel approach to securing visual 
output in AR systems. The authors propose the use of deep reinforcement learning 
to intelligently displace AR content and reduce obstruction of real-world objects. 
This approach utilizes a local fog computing node, which runs training simulations 
to automatically learn an appropriate policy for filtering potentially malicious or 
distracting content produced by an application. 

Revetria et al. [29] discuss the integration of AR with the Internet of Things (IoT) 
for improving safety and security in industrial settings in their paper “Augmented 
Reality and Internet of Things for Improved Safety and Security in Industrial 
Plants.” They propose the use of AR for real-time monitoring of mechanical struc-
tures, improving the safety of the working environment. This approach leverages the 
capabilities of AR and IoT to provide real-time feedback and situational awareness, 
thereby enhancing safety and security in industrial plants. 

Lastly, the paper “Side Channel Attack in Augmented Reality: An Exploration” 
by Nasr et al. [30] discusses the potential of side channel attacks in AR systems. 
The authors propose a framework for studying these attacks and providing a library 
for AR SDK to protect end users’ location-based privacy. This work highlights the 
importance of understanding and mitigating the potential risks associated with side 
channel attacks in AR systems. 

In conclusion, the integration of AI and ML in AR security presents a promising 
approach to addressing the unique security challenges posed by AR technologies. 
As these technologies continue to evolve and become more integrated into our daily 
lives, it is crucial to leverage the power of AI and ML to ensure a safe and secure 
user experience. 

2 Augmented Reality (AR) Security Threats 

With AR becoming prevalent across various sectors, it is accompanied by an array 
of insecurities and challenges that pose potential threats to the integrity of user 
experience and data privacy.
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Data Privacy Concerns Augmented Reality (AR) technologies, while providing 
immersive experiences and novel interactions, pose significant security risks. 
These threats span a wide range of categories, from privacy invasion to malware 
attacks, ransomware, and physical compromise of devices. A key concern with 
AR technologies is their extensive data collection capability, which raises serious 
privacy issues. If malicious actors gain access to an AR device, the potential loss of 
privacy is significant. It is crucial to question how AR companies use and secure the 
information they collect, where this data is stored, and whether they share it with 
third parties. 

Intrusion of AR Sensor Technologies The reliability of AR content, often gener-
ated by third-party vendors, is not guaranteed. This uncertainty can be exploited by 
cyber attackers through methods such as spoofing, sniffing, and data manipulation, 
leading to the dissemination of false information. This unreliable content can also 
be used to deceive users in social engineering attacks, distorting users’ perception 
of reality to their advantage. 

Cyber Threats to AR AR applications can also be conduits for malware, embed-
ded within advertising content. Unsuspecting users who interact with these ads 
could be led to malware-infected AR servers. Additionally, the risk of network 
credential theft from wearable devices presents another security concern. If such 
credentials are compromised, unauthorized access to sensitive information may 
occur. Denial-of-service attacks could disrupt AR services, causing severe conse-
quences, especially in critical situations where the technology is essential. This 
risk is coupled with the possibility of man-in-the-middle attacks, where network 
attackers eavesdrop on the communications between the AR browser and the AR 
provider. Ransomware attacks pose another threat, with attackers potentially gaining 
access to a user’s AR device, recording their behavior, and threatening to release 
these recordings unless a ransom is paid. 

Physical Vulnerabilities in AR Devices Physical damage or theft of wearable AR 
devices is a significant security concern, as these devices can be easily lost or stolen. 
The use of cloud services by AR technologies introduces additional vulnerabilities, 
such as potential data interception and cloud server breaches. Therefore, it is critical 
for IT departments to adopt secure and reliable cloud practices, including access-
monitoring and authentication tools. As an alternative, sensitive information can 
be localized within the facility, eliminating many potential vulnerabilities. Another 
approach could be the use of hardwired, projection-based AR platforms, which are 
less susceptible to hacking and data theft. 

The cybersecurity environment surrounding AR is not a fixed entity, but rather a 
dynamic and ever-evolving landscape. As advancements in AR technologies persist, 
the threats they encounter concurrently evolve. This rapid technological progression 
necessitates an enduring vigilance and adaptability to safeguard against emergent 
threats and to ensure the secure utilization of AR. The fluid nature of AR cyber-
security is underscored by the unique forms of cyberattacks that specifically target 
AR systems. These attacks underscore the imperative for continuous innovation and
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adaptation in AR cybersecurity strategies. In the following sections, I enumerate 
these unique attacks: 

2.1 Fraud, Theft, and Disruption 

Fraud, theft, and disruption are prevalent forms of cyberattacks that pose significant 
threats to the security of AR systems. Fraud in AR often involves deceptive practices 
designed to trick users into revealing sensitive information. For instance, a malicious 
AR application might mimic a legitimate one, tricking users into entering their 
login credentials or other personal information. Theft in the context of AR usually 
involves stealing data or resources. This could range from personal data collected 
by AR applications to proprietary AR content and technology. For example, a 
cybercriminal might exploit vulnerabilities in an AR application to access and 
steal user data. Disruption involves interrupting or degrading an AR service. This 
could be achieved through various means, such as launching a Distributed Denial of 
Service (DDoS) attack against an AR server or exploiting a software vulnerability 
to cause an AR application to crash.These threats highlight the importance of 
implementing robust security measures in AR systems. This includes secure design 
and coding practices, regular security testing, user education, and the use of 
advanced security technologies such as encryption and intrusion detection systems. 

2.2 Invisible Eavesdropping 

Invisible eavesdropping is a potential threat unique to the AR, where an attacker 
could invisibly listen in on other users inside a virtual room without their knowledge 
or consent. This form of cyberattack could lead to significant privacy breaches and 
misuse of personal information. Invisible eavesdropping could take various forms. 
For instance, an attacker could exploit software vulnerabilities or design flaws to 
gain unauthorized access to a virtual room or conversation. They could also use 
advanced techniques such as network traffic analysis or packet sniffing to intercept 
and decode the data transmitted between users. This threat is particularly concerning 
given the immersive and interactive nature of the AR. Users might engage in private 
conversations or share sensitive information under the assumption of privacy, not 
realizing that an attacker could be listening in. To mitigate this threat, it’s crucial to 
implement robust security measures in the AR. This includes secure communication 
protocols, end-to-end encryption, and strong access controls. Additionally, users 
should be educated about the potential risks and encouraged to exercise caution 
when sharing sensitive information in the AR.
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2.3 Manipulation into Physical Harm 

Manipulation into physical harm is another potential threat unique to AR. This 
threat involves manipulating the AR environment in such a way that it could lead 
to physical harm to the user in the real world. For instance, an attacker could trick 
a user into walking into a physical object or off a ledge. In the context of AR, this 
type of attack could take various forms. For example, an attacker could create an AR 
object or path that leads a user to collide with a real-world object. Alternatively, they 
could manipulate the AR environment to make it appear as if a real-world hazard, 
such as a ledge or a stair, does not exist. This threat is particularly concerning given 
the immersive nature of AR. Users might fully engage with the AR environment, 
not realizing that it could be manipulated to cause real-world harm. 

To mitigate this threat, it’s crucial to implement safety measures in AR. This 
includes features that alert users to the presence of real-world hazards, safeguards 
that prevent the manipulation of the AR environment in dangerous ways, and user 
education about the potential risks. Additionally, users should be encouraged to 
maintain awareness of their real-world surroundings while using AR. 

2.4 Human Joystick Attack in AR 

The Human Joystick Attack is a unique form of threat identified by researchers at 
the University of New Haven. This attack involves controlling immersed users in 
an AR environment and moving them to a location in physical space without their 
knowledge. This could potentially lead to physical harm. 

In a Human Joystick Attack, an attacker could manipulate the AR environment to 
control the user’s movements. For instance, they could create an AR object or path 
that leads the user to move in a certain direction in the real world. Alternatively, they 
could manipulate the AR environment to make it appear as if the user is moving in a 
different direction than they actually are. This attack is particularly concerning given 
the immersive nature of AR. Users might fully engage with the AR environment, not 
realizing that their movements are being controlled by an attacker. This could lead to 
situations where the user unknowingly moves into a dangerous location or situation 
in the real world. 

To mitigate this threat, it’s crucial to implement safety measures in AR. This 
includes features that prevent the manipulation of the user’s movements, safeguards 
that ensure the consistency and stability of the AR environment, and user education 
about the potential risks. Additionally, users should be encouraged to maintain 
awareness of their real-world surroundings while using AR.
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2.5 Chaperone Attack in AR 

A Chaperone Attack is a unique form of threat in AR that involves modifying the 
boundaries of a user’s virtual environment. This could potentially lead to physical 
harm, as users could be tricked into moving into dangerous areas in the real world. 
In a Chaperone Attack, an attacker could manipulate the AR environment to alter the 
perceived boundaries of the virtual space. For instance, they could make the virtual 
space appear smaller or larger than it actually is, or they could create an illusion of 
a safe path that leads the user into a dangerous area in the real world. 

This attack is particularly concerning given the immersive nature of AR. Users 
might fully engage with the AR environment, not realizing that the boundaries of 
their virtual space have been manipulated. This could lead to situations where the 
user unknowingly moves into a dangerous location or situation in the real world. 

To mitigate this threat, it’s crucial to implement safety measures in AR. This 
includes features that prevent the manipulation of the virtual boundaries, safeguards 
that ensure the consistency and stability of the AR environment, and user education 
about the potential risks. Additionally, users should be encouraged to maintain 
awareness of their real-world surroundings while using AR. 

2.6 Overlay Attack 

An Overlay Attack in the context of AR applications involves the unauthorized 
addition or modification of virtual objects within a user’s view. This could manifest 
as displaying undesired or inappropriate content, altering existing virtual elements, 
or creating misleading virtual cues. The primary intention behind such an attack is 
to confuse, disorient, or deceive the user. 

In the case of Ubiquity6, an augmented reality startup, the potential for Overlay 
Attacks is significant due to the app’s feature of allowing users to add persistent 
virtual objects to real-world environments. These objects can be interacted with by 
other users, opening up the possibility for malicious alterations or additions. 

Examples of Overlay Attacks could include digital vandalism, where a user’s 
virtual creation is defaced by another user, or trolling and harassment, where users 
place obstructive or offensive virtual objects in front of others. These actions can 
disrupt the user experience, potentially causing distress or harm. 

Overlay Attacks pose a unique challenge in the realm of augmented reality 
security. They exploit the interactive and persistent nature of these environments, 
making them difficult to prevent without imposing restrictions on user creativity and 
freedom. Therefore, addressing Overlay Attacks requires a careful balance between 
user safety and the open-ended interactivity that makes augmented reality engaging 
and immersive.
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2.7 Disorientation Attack 

A disorientation attack is a unique form of threat in AR that aims to confuse 
or disorient a user, potentially making them more susceptible to other forms of 
attack or manipulation. This type of attack leverages the immersive nature of AR 
to create a disorienting environment or situation that can cause confusion, nausea, 
or even physical discomfort for the user. In a disorientation attack, an attacker 
could manipulate the AR environment to create visually confusing or disorienting 
scenarios. For instance, they could rapidly change the user’s virtual location, alter 
the orientation or scale of virtual objects, or create visually conflicting cues that can 
lead to a sense of disorientation. 

This disorientation can have several consequences. First, it can cause physical 
discomfort or sickness for the user, including symptoms such as nausea, dizziness, 
and balance issues. Second, it can make the user more vulnerable to other forms of 
attack. For example, a disoriented user might be more likely to fall for a phishing 
attack or inadvertently reveal sensitive information. 

To mitigate this threat, it’s crucial to implement safety measures in AR. This 
includes features that prevent rapid or disorienting changes in the AR environment, 
safeguards that ensure the consistency and stability of virtual objects, and user 
education about the potential risks. Additionally, users should be encouraged to take 
regular breaks when using AR to prevent disorientation and related symptoms. 

2.8 Man in the Room Attack in AR 

The Man in the Room Attack is a form of eavesdropping attack unique to AR where 
an attacker can invisibly observe and listen to other users in a virtual room without 
their knowledge or consent. 

In a Man in the Room Attack, an attacker could exploit vulnerabilities in the 
AR system to gain unauthorized access to a virtual room or conversation. They 
could invisibly join the AR session and observe or listen to other users without their 
knowledge. This could lead to significant privacy breaches and misuse of personal 
information. 

This attack is particularly concerning given the immersive and interactive nature 
of AR. Users might engage in private conversations or share sensitive information 
under the assumption of privacy, not realizing that an attacker could be invisibly 
present in the room. 

To mitigate this threat, it’s crucial to implement robust security measures in AR. 
This includes secure communication protocols, end-to-end encryption, and strong 
access controls. Additionally, users should be educated about the potential risks and 
encouraged to exercise caution when sharing sensitive information in AR.
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3 AI and ML in Enhancing AR Security 

Augmented Reality (AR) has emerged as a transformative technology, reshaping 
various sectors from education to industry. However, the rapid advancement and 
adoption of AR technologies have brought forth significant security challenges. The 
continuous interaction of AR with the environment and the user’s field of vision 
via video, audio, and other sensors raises significant security, privacy, and safety 
concerns [27]. 

Artificial Intelligence (AI) and Machine Learning (ML) have shown great 
potential in addressing these security challenges. For instance, deep reinforcement 
learning has been proposed to secure visual output in AR systems. These systems 
intelligently displace AR content to reduce obstruction of real-world objects while 
maintaining a favorable user experience [22]. 

Moreover, the integration of AR with other emerging technologies such as the 
Internet of Things (IoT) offers the possibility of implementing innovative systems 
related to industrial safety and security. For example, AR can be used for real-
time monitoring of mechanical structures, improving the safety of the working 
environment [29]. 

However, AR systems are not immune to attacks. Side channel attacks, where 
malicious users analyze and match patterns to get desired information, pose a 
significant threat to AR systems. To combat this, researchers have proposed a 
framework for studying these attacks and providing a library for AR SDK to protect 
end users’ location-based privacy [30]. 

AI and ML can play a crucial role in detecting and preventing such attacks. 
For instance, machine learning algorithms can be used to detect anomalies in AR 
systems, providing an additional layer of security [31]. Furthermore, AI can be 
used to analyze patterns and predict potential threats, allowing for proactive security 
measures. 

In conclusion, AI and ML hold great promise in enhancing the security of AR 
applications. As AR technologies continue to advance and become more integrated 
into our daily lives, it is crucial to leverage the power of AI and ML to address the 
unique security challenges they present. 

3.1 AI for Anomaly Detection in AR Systems 

With the complexity of AR systems, the detection of anomalies becomes a crucial 
aspect to ensure the smooth operation and user experience. Artificial Intelligence 
(AI), with its ability to learn from data and make predictions, offers promising 
solutions for anomaly detection in AR systems. 

Anomaly detection refers to the identification of items, events, or observations 
that deviate from an expected pattern in a dataset. These anomalies often translate 
to critical and actionable information in a system. In the context of AR systems,
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anomalies could range from unexpected user behavior, system performance issues, 
to security threats. 

AI, particularly Machine Learning (ML) and Deep Learning (DL), has shown 
great potential in anomaly detection. These technologies can learn from vast 
amounts of data, identify patterns, and make predictions, making them well-suited 
for detecting anomalies that might be too complex for traditional methods to 
identify. 

For instance, a study by Smedsrud et al. [32] demonstrated the use of AI 
in detecting anomalies in video capsule endoscopy (VCE) data, a form of AR 
system used in healthcare. The researchers developed an AI-based system that could 
classify VCE data and detect anomalies such as erosions and erythema, which 
are often difficult to differentiate from normal mucosa. The system was able to 
achieve accurate predictions, demonstrating the potential of AI-based analysis in 
AR systems. 

The use of AI in anomaly detection in AR systems can be further enhanced with 
semi-supervised and unsupervised machine learning methods. These methods can 
learn from both labeled and unlabeled data, making them more flexible and capable 
of handling real-world data. For example, self-learning and neural graph learning 
are techniques that use unlabeled data in addition to a small amount of labeled data 
to extract additional information. In areas with scarce data, these new algorithms 
might be the technology needed to make AI truly useful for AR systems. 

However, it is important to note that the implementation of AI-based anomaly 
detection in AR systems is not without challenges. One of the key considerations 
is how the dataset is split into training and test sets. This is crucial to avoid 
having related frames in several sets, which can give an unfair effect on the results. 
Therefore, the splits should be completely different, probably even at the level of 
patients. 

In conclusion, AI offers promising solutions for anomaly detection in AR 
systems. With its ability to learn from data and make predictions, AI can detect 
anomalies that might be too complex for traditional methods to identify. However, 
the implementation of AI in AR systems requires careful consideration of factors 
such as data splitting and the use of semi-supervised and unsupervised learning 
methods. As research in this area continues to advance, we can expect to see 
more sophisticated AI-based anomaly detection systems in AR, enhancing the user 
experience and system performance 

4 Case Study Analysis 

In this section, we explore the threat model of AR systems and demonstrate several 
new categories of threats caused by the unique combination of continuous GPS 
sensing, high-volume visual data capturing, and image processing. Based on the 
type of the attack, we divide our research agenda into two thrusts: (1) defending 
against the AR attacks under low speed and (2) defending against AR attack under
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high-speed scenario. For each research thrust, we will study how to develop a 
trustworthy computing and communication framework to identify, analyze, and 
mitigate the attack and its border impact. The outcome of our project, however, is 
a uniformed system where all the frameworks will be integrated into it. The system 
will proactively defend against both physical and cyber attacks in the AR system. 

4.1 Case Study 1: Defending Against AR Attack in Mobile 
Scenario 

In the context of mitigating AR threats within mobile environments, a series of 
strategic measures can be implemented. 

Initially, an active caching strategy can be employed, wherein AR content is 
retained on the server. As per the referenced study, the system can mitigate privacy 
leakage by confining the cache to respond solely to AR user deployment and 
prohibiting the deployment of location-based AR content. This effectively impedes 
an attacker’s attempts to infer locations based on data size. 

Subsequently, the regulation of network traffic monitoring can be intensified, 
thereby complicating the task for potential attackers seeking to analyze and exploit 
the system. As demonstrated in the referenced paper [33], implementations such 
as restricting access permissions to system API, mandating encrypted communi-
cations, and adopting irregular data transmission in AR applications can render it 
challenging for attackers to monitor network traffic and deduce a victim’s location. 

Nevertheless, the study underscores the necessity to formulate more robust and 
comprehensive defenses, predicated on large-scale and diverse experimentation, 
as attackers can still discern the relationship between AR content size and traffic 
patterns. 

The paper concludes by highlighting the inherent vulnerabilities of current 
location-based AR applications, which pose a significant risk to users’ geolocation 
privacy. It calls upon developers to reevaluate their geolocation transmission pro-
tocol and comprehend the serious implications of privacy leaks in AR applications. 
The study also underscores the urgency of devising strategies to protect against side-
channel attacks and safeguard AR users in mobile environments. 

4.2 Case Study 2: Understanding and Mitigating Perceptual 
Manipulation Attacks 

In the rapidly advancing field of Augmented Reality (AR), Perceptual Manipulation 
Attacks (PMAs) pose a growing threat. This was extensively investigated in a 
landmark study conducted at the University of Washington [34]. PMAs exploit the 
seamless integration of virtual and physical realities in AR environments to subtly 
alter users’ perceptions, thereby influencing their decisions and actions.
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The study focused on three primary channels through which PMAs operate: 
visual, auditory, and situational awareness. A series of detailed experiments were 
conducted involving 21 participants, with the aim to measure user reactions to 
PMAs, evaluate the influence of such attacks on user behavior, and understand 
the instinctive self-defense mechanisms individuals employ when faced with these 
deceptive techniques. 

The findings revealed that PMAs significantly influenced the participants’ 
responses. Visual attacks were particularly effective, deceiving participants through 
false color overlays on target objects, leading to confusion in task comprehension. 
Auditory manipulations demonstrated how distracting sounds could adversely 
affect user performance during tasks requiring high concentration. In terms of 
situational awareness attacks, participants were deceived by a conspicuous image 
that prevented them from noticing changes in their real environment. 

The study observed that reaction times increased during an attack and, interest-
ingly, remained elevated even in non-attack scenarios. This suggested the potential 
for PMAs to have lasting effects. The study also discovered various adaptive strate-
gies that participants instinctively initiated to counteract the attacks. However, these 
attempts often failed to neutralize the effects of the attacks, further highlighting the 
deceptive nature of PMAs. 

In response to the significant implications of the study for future AR applications, 
the researchers proposed several countermeasures to secure the AR environment. 
These included a contextual focus mode, an “Escape to reality” option, defenses 
centered around human cognition, and fostering resilience against attacks. The goal 
is to reduce susceptibility to PMAs. 

As AR technology becomes increasingly prevalent across various sectors such as 
healthcare, education, entertainment, and commerce, it is crucial to develop effective 
countermeasures against PMAs. Therefore, further research in this domain is 
essential. The study strongly recommended a comprehensive assessment of the real-
world impacts of PMAs, tracking the evolution of these attacks, and understanding 
the implications of PMAs in settings with multiple users. 

In conclusion, identifying and preventing PMAs is of paramount importance as 
the AR realm continues to expand. The work by the University of Washington team 
is groundbreaking, paving the way for further exploration of safety measures in AR, 
and provides invaluable insights to fuel more research and development in this area. 

5 Case Study 3: Secure and Private Sharing Mechanisms for 
Multi-User AR System 

In [35] the authors focuses on the development of secure and private sharing 
mechanisms for multi-user Augmented Reality (AR) applications. It primarily dis-
cusses the design, implementation, and performance analysis of a prototype named 
ShareAR, which aims to enable multi-user AR applications that respect users’
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security and privacy rights within shared physical spaces. The authors highlight that 
AR, with its integration into the physical world, offers unique challenges for content 
sharing such as understanding the dynamics of shared virtual and physical spaces. 
The sharer’s physical location and the method for sharing AR content—either opt-in 
or opt-out—are considered as crucial factors in their experiment. To demonstrate the 
efficacy of ShareAR, different scenarios involving multiple users interacting with 
shared AR objects were tested through three AR case study apps (Paintball, Doc Edit 
and Cubist Art). ShareAR was found successful in protecting owned physical spaces 
and giving users control both over AR content sharing from their perspective and 
the inbound sharing requests. It demonstrated that the system can support a breadth 
of sharing control functionalities with limited developer effort and can scale with 
increasing numbers of users and objects while maintaining reasonable operational 
efficiency and performance. In conclusion, the, authors affirm the importance of 
addressing the challenges of securing and privacy in multi-user AR ecosystems even 
as the technology continues to evolve. They propose further exploration and future 
work in this area to provide better solutions for user control, permissions, outbound 
and inbound content sharing, and mechanics of sharing. 

6 Challenges and Future Prospects 

6.1 Potential Risks of AI and Machine Learning in AR Security 

While the implementation of AI and Machine Learning techniques in AR appli-
cations greatly enhance security measures, it’s also critical to acknowledge the 
potential risks they can bring. 

Privacy Invasion AI models, particularly those involved in machine learning, 
typically require significant data to train accurately. Often, this data includes 
sensitive and private information about users. Ensuring that this data is not abused 
or misused is a real challenge for developers and researchers. 

Dependency on Technology With AI and machine learning systems, there is also 
a risk of becoming overly dependent on the technology. Errors in the AI system can 
lead to serious breaches or compromises in the AR application. 

Mitigation of Risks The first step towards mitigating these risks involves imple-
menting strict policies and regulations around data handling. Encryption of data and 
strong access controls should be applied. Secondly, designers of AR systems should 
consider the possibility of AI failures and prepare backup plans. Lastly, promoting 
transparency in AI models and decisions could help keep everyone informed and 
aware, resulting in early threat detection and mitigation. It is incumbent upon 
research and development professionals to balance the conveniences of AI and 
machine learning with the potential risks they pose, ensuring a secure and ethical 
use of these modern technologies in AR applications.
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6.1.1 Exploiting AI-Generated Video Manipulations for AR Device 
Location Tracking 

We would like to discuss an innovative methodology that harnesses the power 
of generative artificial intelligence models for video content manipulation. This 
approach, while groundbreaking, could potentially be leveraged for tracking user 
locations, thus raising important considerations for privacy and security. 

The proposed methodology involves the use of a generative AI model to subtly 
alter a video by inserting additional frames that are similar to the existing ones. 
These AI-generated frames are designed to have slight variations in brightness 
levels, which are not easily perceptible to the human eye but can be detected by AR 
devices. When an AR device processes this manipulated video through its camera, 
the brightness variations in the AI-generated frames cause the device to generate a 
unique encoding pattern. This encoding process, facilitated by a widely used video 
compression standard such as H.264, results in a distinctive network throughput 
pattern as the encoded data is transmitted. 

In a scenario where a malicious actor has access to the user’s AR device network 
traffic, a privilege that is not difficult to obtain in many cases, the unique network 
throughput patterns caused by the AI-manipulated video can be analyzed. Utilizing 
a network traffic analysis tool like MidJourney or Stable Diffusion, the attacker 
could potentially infer the user’s location. The implementation of this methodology 
involves several key steps. Firstly, a generative AI model, such as a Generative 
Adversarial Network (GAN), is developed to create frames with subtle brightness 
variations. This model is integrated with a video processing pipeline that can insert 
the AI-generated frames into the video at desired intervals. 

On the AR device side, the video encoding process, using H.264 or a similar 
codec, is sensitive to the brightness variations in the AI-generated frames. The 
network traffic of the AR device is monitored using a tool like MidJourney to 
identify the unique throughput patterns caused by the AI-manipulated video. Finally, 
an algorithm is developed that can correlate these throughput patterns with the user’s 
location. This could involve machine learning techniques and would likely require a 
training dataset of network throughput patterns associated with different locations. 

This proposed methodology underscores the potential security risks associated 
with the integration of AI and AR technologies. It emphasizes the importance of 
robust security measures to protect user data and privacy in the evolving landscape 
of AR applications. However, it is crucial to consider the ethical and privacy 
implications of this approach, as it involves tracking a user’s location. 

6.2 Emerging Trends and Future Prospects 

6.2.1 AI for Prevention of Malicious AR Content 

The potential for malicious content in AR system presents a significant threat. To 
counteract this, we can build a proactive AI-based framework for the detection and
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prevention of such content. This framework primarily utilizes two AI models: Gen-
erative Adversarial Networks (GANs) and Convolutional Neural Networks (CNNs). 
The GAN is employed to generate a wide array of potential malicious AR content, 
forming a comprehensive training dataset. This dataset encompasses various forms 
of malicious content, ranging from inappropriate imagery to sophisticated security 
exploits. The CNN, renowned for its proficiency in image analysis, is then trained 
on this dataset. Through this training, the CNN learns to discern the characteristics 
indicative of malicious AR content, thereby enabling it to detect similar content 
within real-world AR applications. Upon training, the CNN is integrated into 
AR applications as a content filter. As new AR content is introduced, the CNN 
scrutinizes it for signs of malicious intent. Content deemed potentially harmful can 
be flagged for review or automatically blocked, contingent on the threat level. 

This AI-based approach provides a robust and scalable solution to the threat 
of malicious AR content. However, it necessitates careful consideration of ethical 
implications, particularly regarding user privacy and content censorship. Future 
work should aim to strike a balance between security and user freedom in AR 
applications. 

6.2.2 AI-Based User Authentication Methods in AR 

As the proliferation of Augmented Reality (AR) applications continues unabated, 
the necessity for robust user authentication methods escalates in tandem. Conse-
quently, it is incumbent upon us to devise and implement an Artificial Intelligence 
(AI)-based framework for user authentication in AR, harnessing the power of 
biometric data and machine learning techniques. 

Biometric authentication, capitalizing on unique biological attributes such as 
facial characteristics or vocal patterns, presents a promising avenue for user authen-
tication within AR. However, conventional biometric systems may be susceptible 
to spoofing attacks, wherein an attacker endeavors to replicate the user’s biometric 
data. To counteract this, we advocate for an AI-based authentication system that 
employs machine learning to bolster the security of biometric authentication. Future 
AR systems could utilize a Convolutional Neural Network (CNN), trained on a 
dataset of biometric data, thereby learning to discern the unique attributes of each 
user’s biometric features. This knowledge can then be applied to authenticate users 
in real-time, juxtaposing the input biometric data with the learned features. 

In addition, the system integrates liveness detection, a technique used to ascertain 
whether the biometric data originates from a live individual as opposed to a recorded 
or fabricated sample. This can be accomplished using a range of methods, such as 
scrutinizing the texture of the skin in a facial recognition system or detecting the 
natural fluctuations in a vocal pattern. By amalgamating biometric authentication 
with machine learning and liveness detection, this AI-based system offers a robust 
and secure method for user authentication in AR applications.
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However, it is crucial to consider the privacy implications of this approach, as it 
involves the collection and processing of sensitive biometric data. Future research 
should concentrate on ensuring the privacy and security of user data in such systems. 

7 Conclusion 

This compelling exploration in the realms of AR and its associated security chal-
lenges has unveiled both the vast opportunities and formidable threats synonymous 
with this technology. By infusing digital data into our physical environment, AR has 
transformative implications across diverse sectors, such as education, entertainment, 
and healthcare. However, with novel technology surfaces novel threats—data 
privacy, intrusive sensor invasion, and persistent cyberattacks among the most 
pressing. 

AI and ML, with their inherent capabilities of learning and improving upon expe-
rience, emerge as potential game-changers in the security landscape of AR. Their 
application in anomaly detection, predicting threats, and offering novel solutions 
underlines the immense potential they hold. Despite this, the implementation and 
application of AI/ML in AR security warrant careful consideration, a careful balance 
to be struck between vital security measures and ensuring user freedom. 

Furthermore, while AI/ML techniques could greatly enhance AR application 
security, we must also consider their techniques’ potential risks to user privacy. A 
nuanced, balanced approach is warranted, respecting the importance of user privacy 
while utilizing these advanced technologies to their full potential for ensuring the 
security of AR applications. 

As we venture deeper into the digital age, AI and ML may be the torchbearers 
that guide the path to a safer, more secure AR experience and ensure a promising 
future for AR application development. This chapter serves as a stepping stone into 
this exploration and underscores the need for continuous research in this field. 

Thus, at the cusp of a digital revolution, we bear witness to an intriguing interplay 
of advanced technology and security requirements. As AR adoption accelerates, the 
amplification of AI/ML in ensuring secure and private AR experience will be critical 
to watch. 
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1 Introduction 

In the past decades, Machine Learning (ML) and Deep Learning (DL) models have 
been the de-facto solution for several domains (e.g., speech recognition, natural 
language processing, computer vision, computer and network security, data mining, 
etc.) due to their ability to automatically generalize (i.e., classify or cluster) to both 
known and unknown input samples [42, 45]. In fact, one of the main applications 
of ML in computer and network security has been the detection of malicious 
software (malware) [5, 36, 43, 44, 58]. Currently, malware detection models run 
in cloud environments in order to classify unknown samples [63]. Such models 
can achieve outstanding performance over traditional methods (e.g., signature-
based method or heuristic-based method) [4]. However, recent research has shown 
that the performance of these models can drop drastically via adversarially-
crafted/perturbed inputs [7, 19, 48, 57]. On the other hand, other studies have shown 
the effectiveness of adversarial samples against other ML models without prior 
knowledge of the properties of the target classifier (e.g., features, classification 
algorithm, hyperparameters). This property is known as transferability and makes 
these models ill-suited for security-oriented applications [40, 47, 57]. 
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Moreover, the effectiveness of adversarial attacks is highly related to their 
domain-specific constraints. For instance, in the computer vision domain, the adver-
sarial manipulations to the samples should be imperceptible to the human eye [20], 
inaudible to the human ear in the audio domain [8], and preserve its semantics 
in the text domain [15], while still resulting in the sample evading the target 
classifiers. In the malware detection domain, adversarial ML attacks to ML-based 
malware detectors involve adding carefully crafted perturbations to the malware 
samples that preserve the malicious functionality of the malware while allowing the 
samples to evade the target classifier (i.e., modified malware samples are classified 
as benign). In this context, prior studies were able to craft adversarial malware 
samples that successfully evaded ML-based malware detection systems, including 
Windows Portable Executable (PE)-based malware detectors [13, 28, 29], Android 
malware detectors [12, 62], PDF-malware classifiers [55, 61] and even cloud-based 
proprietary anti-virus engines (e.g., Kaspersky, Eset, Sophos) [9]. These examples 
demonstrate the possibility of evading the state-of-the-art ML-based malware classi-
fiers not by complex concealment techniques (e.g., polymorphism, metamorphism, 
encryption, packing), but by simple adversarial perturbations carefully crafted via 
adversarial attacks. To that end, other studies proposed defense mechanisms that 
prevent adversarial manipulations such as adversarial training [41, 57] and defensive 
distillation [46]. Nevertheless, these defense mechanisms are computationally costly 
and suffer from model poisoning and decreased detection accuracy [13]. Therefore, 
defending ML-based malware detection models against adversarial ML attacks is 
still an open research problem. In recent years, image-based malware detection 
has been an active field of research in malware analysis. Starting with the work 
of Nataraj et al. [37], several studies, including but not limited to [3, 17, 22, 26, 38], 
have utilized the gray-scale image representation of malware binaries to efficiently 
and timely classifying malware according to their corresponding family. 

In this chapter, we aim to assess the robustness of image-based malware detection 
against adversarial attacks. To that end, we design and construct a lightweight CNN 
image-based malware detection model to detect Windows PE malware, based on 
the family it belongs to. It is worth mentioning that adversarial attacks, which are 
relatively easy to apply to images in the computer vision domain, are extremely 
difficult to apply to transformed images of malware samples. This difficulty can 
be explained because an operation that adds carefully crafted adversarial noise 
to a malware image has a very high possibility of breaking the functionality of 
the sample when the image is converted back to a malware binary. Although 
recent works have performed adversarial attacks against image-based malware 
classifiers [27, 32, 49, 60], most of these attacks fail to preserve the functionality 
of the adversarial malware sample. To evaluate the robustness of image-based 
malware classifier against adversarial attacks, we select adversarial attacks that 
preserve the functionality of the malware sample with a comparison with the state-
of-the-art ML-based malware classifier MalConv [52]. In addition, we perform four 
adversarial attacks under white box and black box settings that preserve the malware 
functionality after modifications.
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For our evaluation, we used the MalwareDatabase datasets [33] and the 
DikeDataset [35] consisting of different families including Generic, Trojan, 
Ransomware, Worm, Backdoor, Spyware, Rootkit, Encrypter, and Downloader in 
the Windows Portable Executable (PE) format. First, we trained our CNN classifier 
using the gray-scale images of the malware. Then, we performed four adversarial 
attacks against our classifier as well as MalConv. Our evaluation shows that the 
image-based malware detection approach is more robust against these attacks than 
MalConv. Interestingly, the evasion rate of some adversarial attacks dropped to 5% 
in certain cases. Our extensive analysis also shows the robustness and efficiency of 
our classifier against most of the adversarial attacks that preserve the functionality 
of the malware. 

Contributions The main contributions of this chapter are as follows: 

• We design and construct a lightweight CNN image-based malware classifier with 
high detection accuracy and low implementation overhead. 

• We perform four adversarial attacks against ML-based malware classifiers that 
can evade the state-of-the-art ML-based malware detectors such as MalConv 
while preserving the functionality of the modified malware. 

• We evaluate the performance of our classifier and assess its robustness against 
adversarial attacks in comparison to MalConv. 

Organization The remainder of our chapter is organized as follows: In Sect. 2, 
we provide the related work. Section 3 briefly provides background information on 
Portable Executable File Format, visualization techniques, and adversarial attacks. 
Section 4 defines the scope of the problem and the threat model considered in this 
chapter. In Sect. 5, we describe our image-based malware classifier including the 
network architecture. Section 6 describes the adversarial ML attacks used in our 
study. Section 7 discusses the performance evaluation and outlines our experimental 
results. Section 8 provides a discussion, summarizing key points and benefits. 
Finally, Sect. 9 concludes our chapter. 

2 Related Work 

This section briefly reviews related work on image-based malware detection and 
their corresponding adversarial attacks. 

Image-Based Malware Detection In [37], the authors proposed a new technique 
for malware classification that converts malware binaries into gray-scale images 
and determines the similarity of malware samples that belong to the same family. 
According to these results, the authors extracted the features of gray-scale malware 
images and used k-nearest neighbor (k-NN) for classification, enabling them to
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achieve 98% classification accuracy. Since then, several studies employed malware 
images and visualization techniques for malware classification [3, 17, 22, 26, 38]. 

Adversarial Attacks Against Image-Based Malware Classifiers Recently, 
adversarial attacks against image-based malware classifiers started to be a focus 
of research. A crucial factor that must be considered when generating adversarial 
malware to evade image-based classifiers, is creating an adversarial sample 
whose image representation can evade the classifier while retaining its malicious 
functionality. The existing literature covers several adversarial attacks that aim to 
evade image-based malware classifiers. However, these attacks do not preserve the 
malicious functionality of the malware. Park et al. [49] performed Fast Gradient 
Sign Method (FGSM) and Carlini & Wagner (C&W) attacks to generate an 
adversarial image of a malware sample. Afterward, they utilized their algorithm to 
insert semantic no-operation (NOP) instructions into the original malware sample, 
making it appear as an adversarial sample. Although adding NOP instructions does 
not change the actual logic of a binary, adding instructions changes the section 
size and addresses, and therefore breaks the executable. Liu et al. [32] converted 
the malware binaries to images and then generated an adversarial image using the 
FGSM attack which can evade the image-based classifier. However, the resulting 
file may have a series of unmeaningful character sequences which can break its 
functionality. In the work of Vi et al. [60], a malware binary is converted into an 
image, and then the resource section of the image is determined and perturbed via 
FGSM attack to evade the classifier. Then, the perturbed pixels of the resource 
section are converted back to binary and used to modify the original malware’s 
resource section. However, this approach might cause the Windows PE loader to 
fail to load the malware since this section has to follow a specific structure for 
successful parsing [24]. Khormali et al. [27] proposed COPYCAT which uses an 
adversarial example padding and sample injection attack. The adversarial padding 
technique generates an adversarial image of a sample using well-known attacks 
(e.g., FGSM, C&W, etc.). Then, it converts the image to bytes and appends the 
generated bytes to the end of the original malware, essentially doubling the size 
of the sample. The sample injection attack injects targeted class samples after the 
malware’s exit code, which has a high probability of breaking the malware PE due 
to changing the offsets of the sections after the code section of the malware. 

Differences from Existing Work Despite the prevalence of adversarial attacks tar-
geting image-based malware classifiers, most of the proposed attacks fail to preserve 
the malware’s functionality. Additionally, the defense mechanisms employed to 
counter these attacks often have high computational costs and might be vulnerable to 
model poisoning with reduced detection accuracy. Different from the prior work, our 
study analyzes the robustness of image-based malware classifiers against adversarial 
attacks. Our analysis shows that image-based classifiers are more robust against 
adversarial attacks that preserve the functionality of the malware in comparison 
to MalConv. For this reason, employing an image-based malware classifier does 
not require adversarial training; hence, it remains immune to some extent to model 
poisoning.
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3 Background 

In this section, we provide background information regarding the structure of 
Windows PE (Portable Executable) files, followed by a description of the process 
to represent a malware binary in the form of a gray-scale image. Then, we explain 
typical adversarial attacks against PE-based malware classifiers. 

3.1 Portable Executable (PE) File Format 

Portable Executable (PE) is the format used to create executable files, Dynamic Link 
Libraries (DLLs), and common object files in 32-bit and 64-bit Windows operating 
systems (OS) [18, 50]. It contains the necessary information needed by the OS for 
managing the executable file and provides an architecture-independent, and thus 
portable description. Each PE file consists of a PE header and various sections which 
are used by the linker in the loading process. The PE header possesses section, 
symbol, and optional header information. Note that there can be several sections in 
a PE file, but the sections that are common in the majority of PE files are described 
as follows: 

• .text : encloses the program’s main code, 
• .rdata : includes the read-only initialized data (e.g., strings, constants, etc.), 
• .data : contains the initialized data, 
• .rsrc : holds the resources utilized by the program, such as icons and images. 

In addition to these sections, there are sections containing imported and exported 
symbols (i.e., .idata and .edata), uninitialized data (.bss), and thread-local storage 
(.tls) [50]. 

3.2 Visualization of Portable Executable Malware Files 

The vast majority of malware on the Internet has the structure of Windows Portable 
Executable (PE) files and nearly 64% of malware detected by Symantec were in 
PE format [25]. In this study, we selected PE-based malware families for evaluation 
purposes. A malware binary can be represented as a sequence of zeros and ones. 
Further, it is possible for this vector of binary values to be modified and transformed 
into an image [37]. Specifically, to enable such a conversion, the malware binary is 
represented as a vector of 8-bit unsigned integers (uint8) and then shaped into a 
two-dimensional array. The array is then divided by 255 to represent the array as a 
gray-scale image where the pixels take a value in the range of 0–255 (0 being black, 
and 255 being white). In Fig. 1, we use this technique to illustrate an example of a 
malware binary from the Ramnit family being converted to an image.
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.src 
.text 
.data 
.rsrc 
.idata 

Sections 

Header 

Fig. 1 An image depicting a malware binary from the Ramnit family of malware (left) and PE file 
structure (right). Each section of the image is labeled corresponding to the respective section of the 
PE file excluding the PE Header 

Fig. 2 The first row represents gray-scale images of malware samples belonging to the Ram-
nit [53] family of malware while the second row represents gray-scale images of malware samples 
belonging to the Kelihos_ver3 [53] family of malware 

As shown in the figure, distinct regions in the gray-scale image of a PE malware 
binary correspond to specific sections in the PE structure. Examples of malware-
to-image transformations of two unique malware families are shown in Fig. 2. It  
can be observed that malware samples belonging to the same family of malware 
are visually extremely similar when converted to gray-scale images. Another 
observation is that the images of malware belonging to a specific family will be 
distinct from those belonging to a different family.
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3.3 PE-Based Adversarial Malware Attacks 

The existing literature demonstrates several ways of crafting PE-based malware 
samples in order to misclassify the detector. The proposed approaches can be 
categorized into three classes: 

• Byte append attacks. 
• Feature modification attacks. 
• Malicious code append attacks. 

3.3.1 Byte Append Attacks 

In the byte append attacks, a portion of bytes is appended to the end of the 
malware samples to misclassify the target classifier. Byte append attacks preserve 
the functionality of the malware samples since the payload is not modified. The 
appended bytes can be crafted by means of the gradient-based method of Biggio 
et al. [6] as in  [28], or the Fast Gradient Sign Method (FGSM) of Goodfellow et 
al. [19] as in  [29]. Moreover, the adversary can use benign files while perturbing 
malicious samples. In [56], the authors selected portions from the beginning parts 
of the benign files for this purpose. Another work by Chen et al. [13] proposed 
four techniques: choosing random parts of the benign files, determining the most 
contributing parts of the benign files, selecting the parts of a benign file according 
to saliency vectors, and combination of saliency vector with FGSM approaches. 
There exist two additional attacks that can add crafted bytes to the unused sections 
in a PE-based malware [29] and modify the so-called slack bytes which are added to 
the PE files by compilers for alignment purposes [56]. However, such modifications, 
even if possible to realize, have a high probability of altering the functionality of the 
modified malware samples. 

3.3.2 Feature Modification Attacks 

In feature modification attacks, the adversary modifies the features of a malware 
sample to make it resemble a benign PE file. In this attack, ML-based malware 
classifiers use common features for alterations (e.g., API/system calls, opcodes, 
network connections, file system operations, CPU registers, PE file characteristics, 
and strings [59]). To preserve the functionality of the modified malware sample, 
features are added to the sample without being removed. Examples of feature 
modification attacks include adding API features, adding features via common 
libraries, and using Generative Adversarial Networks (GANs). 

Adding API Features Rosenberg et al. [54] considered adding no-operation API 
calls to the random positions advised by the Jacobian [48] algorithm. To preserve the 
functionality of the malware, the authors encapsulated the original malware binary
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with proxy codes and external Dynamically Linked Libraries (DLLs). During the 
execution, the API hooking mechanism interrupts the execution of the malware and 
inserts the added API call. In this respect, Chen et al. [11] consider eliminating the 
most important features from the malware sample and adding the most important 
features of benign files to the malware to increase the misclassification detection 
rate. Al-Dujaili et al. [1] extracted API calls from PE-based malware samples and 
applied four perturbations based on the gradient-based attack [21] on the encoded 
features of the samples. However, the perturbed features were not mapped back to 
the malware binaries, and the functionality of the modified samples was not verified. 

Adding Features via LIEF Library A number of studies employed the open-source 
LIEF (Library to Instrument Executable Formats) library [31] to modify the features 
of PE-based malware samples. The first study in this context was proposed by 
Anderson et al. [2]. The authors determined a set of perturbation options that can 
be applied via the LIEF library and that ideally should not alter the functionality 
of the modified malware. The perturbation options are applied to the malware 
samples by the mean of a reinforcement learning agent and include: inserting an 
unused function to the import address table, modification of section names, adding 
unused sections, appending bytes, modifying the debug information, packing, and 
unpacking. However, these perturbation options change the functionality of the 
malware and suffer from low performance. Other studies considered the same 
methodology [9, 10, 16, 30]. Among them, Fleshman et al. [16] applied Anderson’s 
attack on four different antivirus products and two ML-based malware detectors 
(i.e., n-gram-based and Malconv). Their experimental results showed that ML-
based detectors were not affected by Anderson’s benign modification attacks. 
Another work utilized a genetic programming-based evasion framework for PE-
based malware classifiers [9]. The proposed framework makes use of Anderson’s 
attacks against an ML-based classifier (Gradient Boosted Decision Tree) and three 
commercial antivirus products (i.e., Kaspersky, Eset, and Sophos). The authors used 
a modified version of Cuckoo [14] sandbox environment to verify the functionality 
of malware instances after the perturbations. However, their framework was able to 
generate functional malware samples for just above 20% of their input files within 
the dataset. 

Using Generative Adversarial Networks Another type of feature modification 
attack was introduced by Hu et al. [23]. The authors introduced a framework based 
on Generative Adversarial Networks (GANs) for adversarial malware crafting. By 
utilizing GAN’s generator and detector components [39], they transform malware 
features into adversarial malware features to bypass the detection system. However, 
the authors fail to provide an explanation regarding the specific process for adding 
features to the malware samples. Furthermore, they do not provide any verification 
regarding the preservation of functionality in the modified samples.
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3.3.3 Malicious Code Append Attacks 

Fleshman et al. [16] applied a malicious code injection attack that appends malicious 
codes to benign files using a Return Oriented Programming Injector (ROPInjector) 
tool of Poulios et al. [51]. Their results demonstrated the effectiveness of this 
attack against both antivirus products and ML-based malware detectors. However, 
ROPInjector cannot inject arbitrary malicious code into benign PE files. It requires 
that the instructions and functionalities of both the malicious and benign PE files 
are similar to each other. 

4 Problem Scope and Threat Model 

4.1 Problem Definition 

Detection of malware has been one of the most active problems of research and 
practices in computer and network security. Traditional signature and heuristics-
based malware detection approaches could not cope with the proliferation of 
new and modified malware in the wild, as well as concealment techniques (e.g., 
obfuscation, packing, polymorphism, metamorphism) employed by adversaries [5]. 
For these reasons, ML techniques have been indispensable to malware detection. In 
such a setting ML models can be trained on malware samples in the wild, which 
may have any concealment techniques, and ML models can learn the patterns in 
the malicious software and successfully detect unknown malware samples (i.e., 
zero-day malware) with higher performance over signature- or heuristics-based 
approaches. However, studies in the last decade showed that ML models are 
susceptible to adversarial ML attacks. Perturbations that are carefully crafted based 
on the gradients of the ML models can cause such high-performance models to 
misclassify the samples. On the other hand, ML-based malware classifiers are also 
vulnerable and can be successfully evaded by adversarial attacks. In this study, we 
design and construct a lightweight CNN image-based malware classifier with high 
detection accuracy. Then, we assess its robustness against adversarial attacks under 
white box and black box settings. 

4.2 Threat Model 

In our study, we consider an adversary as an individual attempting to evade ML-
based malware classifiers through adversarial attacks. We assume that the adversary 
is capable of adding minute perturbations to the Windows PE-based malware 
samples. The adversary’s goal is to force the target classifier to misclassify the 
modified samples as benign. We consider two scenarios of the adversary. In the first
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scenario, the adversary has perfect knowledge of the target model. This knowledge 
consists of information about the internal network architecture, hyperparameters, 
and data. Here, this scenario is referred to as a white-box setting and considered 
the ideal scenario for the adversary. In the second scenario, the adversary has 
limited knowledge of the target model. In this case, the attacker cannot access 
the hyperparameters and has typical access only to the input and output of the 
target model. We refer to this scenario as a black-box setting. In each of these two 
scenarios, the crafting of adversarial samples via adversarial attacks is governed 
according to the following set of adversarial goals and assumptions: 

• The crafted adversarial malware sample can retain its malicious functionality 
after performing adversarial perturbations. 

• The modifications are minimal while resulting in the target model misclassifying 
legitimate malware samples as benign. 

It should be noted that common concealment techniques (e.g., obfuscation, 
packing, polymorphism, metamorphism), employed by malware authors are not 
incorporated in the threat model. This is due to the fact that these attacks do not 
target specific machine learning models, rather they are used by malware authors 
to bypass traditional signature- or heuristics-based detection tools. In fact, such 
concealment techniques were one of the driving reasons for the employment of 
ML techniques for malware detection. Contrary to the aforementioned concealment 
techniques, the adversarial attacks considered in this study are based on the internals 
of the ML model. Considering these goals, the adversary applies two black-box and 
two white-box attacks. 

5 Proposed Image-Based Malware Classifier 

In this section, we describe the details of our proposed image-based malware 
classifier. This includes an overview of our methodology, the considered network 
architecture, and a description of the dataset, with their preprocessing phase. 

5.1 Methodology 

Our proposed methodology comprises of a three-stage process, as illustrated in 
Fig. 3. In the first stage, each malware binary undergoes a pre-processing phase 
where it is converted to an array of unsigned 8-bit integers and normalized to a 
common size. These arrays represent the binaries as gray-scale images and are used 
to train a Convolutional Neural Network (CNN) in the second stage. In the third 
stage, the adversarial examples are then generated using each of the 4 attack vectors: 
Brute-Force Random Byte Append attack, Brute-Force Benign Byte Append attack, 
Random Byte FGSM attack, and Benign Byte FGSM attack.
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Fig. 3 An overview of our proposed approach. Malware binaries are converted into gray-scale 
images before being fed to the CNN model for the training process. A total of 4 adversarial ML 
attacks are applied to malware binaries at the testing phase. Similar to the training process, these 
samples are converted to images and then fed to the model as input in order to classify them 
according to the malware family they belong to 

Convolution Max-Pooling ConvolutionConvolution Max-Pooling Max-Pooling Dense 

Fig. 4 The structure of the convolutional neural network used to classify malware binaries 

5.2 Network Architecture 

Our classifier consists of a Convolutional Neural Network (CNN) built using the 
TensorFlow software library, specifically using TensorFlow’s high-level API, Keras. 
We trained our model on a system running MacOS Ventura v13.5.1 with Apple M1 
Pro chip processor and 16 GB of available RAM. The system has a total of eight 
cores with each processor running a base frequency of 2.20 GHz. The structure 
of our CNN model consists of 3 sets of convolution layers followed by max-pool 
layers with an increasing number of filters in each successive convolution layer (16, 
32, and 64). In each convolution layer, we set the kernel size to (3,3), while the 
pool size of each max-pooling layer is set to (2,2). These layers are followed by two 
dense layers with the final output being a vector representing the probability that 
a sample belongs to each of the nine classes in the dataset. In Fig. 4, we illustrate 
the structure of the considered CNN model. We trained our model on labeled, pre-
processed malware samples from our dataset with a validation split of 0.2 (i.e. the 
model was trained on 80% of the samples while the remaining 20% are used to
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validate or test the accuracy of our model). We labeled the samples from 0 to 8 
according to which malware family they belong to. We set the number of epochs to 
100 and the batch size set to 32. The model achieved an accuracy of 95.06% when 
tested against the malware samples in the validation set. 

5.3 Dataset 

In our study, we considered the MalwareDatabase datasets [33] and the Dike-
Dataset [35] on GitHub.The MalwareDatabase datasets contain 3654 labeled mal-
ware portable executable files as they were filtered out from the rest of the dataset 
that were not PE files and 1346 files were collected from the DikeDataset making 
it a total of 5000 executables. The DikeDataset contains labeled malware samples 
from different families including Generic, Trojan, Ransomware, Worm, Backdoor, 
Spyware, Rootkit, Encrypter, and Downloader. For the benign samples, we selected 
5000 executables from Benign-NET [34] repository found on GitHub. The structure 
of the benign samples is Win32EXE file type and is from pure installations of 
Windows 10 and Windows 7 operating systems. Then, we divided the set of labeled 
malware into training and validation sets using an 80/20 train-test split strategy, 
respectively. The aforementioned resources provide unlabeled malware samples in 
this regard and labeling must be done manually. Even still, most malware samples 
from these resources are classified under different malware families making it 
difficult to classify them into a single family of malware correctly. 

5.4 Preprocessing: Conversion of Malware Binary to Image 

Before training our model, we preprocessed the dataset into a format compatible 
with the model’s input requirements. The preprocessing phase involves converting 
each malware binary in the training set to a gray-scale image and then resizing it 
to a common size. In what follows, we provide a line-by-line description of this 
procedure in Algorithm 1. 

In Line 3, a for loop ensures that each file in the training set directory is visited 
with each iteration of the loop. From Line 5 to Line 7, we calculate the size 
parameters to ensure that the final array will have a relatively similar length and 
width. In Line 8, we convert the file to an array of unsigned integers. From Line 4 
to Line 10, we convert the malware binary to an array of integers. In Line 11 and 
Line 12, we reshape the created array and convert it into an array of 8-bit unsigned 
integers (uint8) that range in values from 0 to 255. The value of each integer in 
the array represents the brightness of a pixel ranging from black to white (0–255). 
In Line 13 and Line 14, we resize the image array to a common size of 100 by 
100 and we normalize the pixel values to a range of 0–1 by dividing the array by 
255. This normalization is done as it is easier for the model to process input arrays
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Algorithm 1: Malware Binary to Gray-scale Image 

1 Input: Malware Binary 
2 Output: Gray-scale Image Array of Malware Binary 
3 for f ile  in getCwd() do 
4 f → open(f ile) 
5 ln → getSize(f ile) 
6 width → math.pow(ln, 0.5) 
7 rem → ln%width 
8 a → array(‘B’) 
9 a.fromfile(f, ln − rem) 

10 f.close() 
11 g → reshape(a, (len(a)/width), width) 
12 g → uint8(g) 
13 h → resize(g, size, size) 
14 h → h/255 

15 return h 

with a smaller range of values. We continue this process in the directory until we 
successfully convert each file to an image array. 

6 Considered Adversarial Attacks 

In terms of adversarial attacks against malware classifiers, the functionality of the 
modified malware is guaranteed only for a subset of byte append attacks (i.e., 
random and benign byte append attacks) and one subset of the feature modification 
attacks (i.e., random and benign byte FGSM attacks). In this case, we first apply 
four byte-append attacks to generate adversarial samples that can evade MalConv 
[52], a state-of-the-art ML-based malware classifier. MalConv is a CNN-based 
malware classifier that analyzes the raw bytes of PE-based malware samples. It 
is a popular malware detector used in various studies as a target model to create 
adversarial samples from PE-based malware files [13, 16, 28, 29, 56]. Given a 
malware binary x of size .S(x), appended by byte perturbations p of size .S(p). 
The byte perturbations p cannot exceed 10% of the original sample size. This is 
because, from an adversarial point of view, the added perturbations are meant to be 
small, seemingly undetectable additions to the original malware binaries, relative to 
the original size of the binary. Other works in the literature append a maximum of 
only 1% of the original sample size [13, 28, 56], therefore, a maximum upper bound 
of 10% is suitable. In other words, the generation of adversarial samples through 
each method is bounded by the equation: 

.S(x + p) ≤ 1.1 × S(x) (1) 

where .x + p is the malware binary with appended byte perturbations.
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6.1 Adversarial Attacks Under Black-Box Settings 

Under black-box settings, we assume that the adversary has limited knowledge 
regarding the internal parameters or the structure of the target/victim model. The 
adversary has only access to the final classification result of the model with 
respect to a given input file. In what follows, we describe two-byte append attacks 
under black-blox settings that utilize brute-force techniques to generate adversarial 
malware samples. 

Brute-Force Random Byte Append In this attack, we append randomly generated 
bytes to the end of a malware binary with each iteration until it is classified as 
benign or the size of the resulting binary reaches the maximum threshold. In case the 
adversarial sample . x′ generated through this method is still being classified correctly 
once this threshold is reached, we extract 10 bytes increments from random points 
in x and append them to the end of the binary. We continue this iterative process 
until the sample is classified as benign. A combination of both of these random 
byte-append techniques ensures that adversarial samples are generated for all of the 
malware binaries in our validation set. 

Brute-Force Benign Byte Append In this attack, we append portions of benign 
files to the end of the malware binary x until it is either classified as benign or 
reaches the upper bound. With each iteration of the attack, we chose a file randomly 
from the set of benign files and we extract a section of 10 bytes from a random 
location. Then, we append it to the end of the malware binary. If the adversarial 
sample generated reaches the upper bound and is still classified correctly, we remove 
the perturbations and we repeat the process with another random benign file being 
selected from the data set, until . x′ is misclassified as a benign file. 

6.2 Adversarial Attacks Under White-Box Settings 

In this case, the adversary has complete access to the structure of the victim model, 
including the internal parameters, hyperparameters, and weights for the Convo-
lutional Neural Network. In what follows, we describe two feature modification 
attacks under white-box settings. 

Random Byte FGSM This method is an adaptation of the FGSM approach origi-
nally proposed by Goodfellow et al. for image-based deep learning classifiers [19]. 
The FGSM method creates adversarial malware samples by using the gradients 
of neural networks. The gradient of the cost function used to train the model, 
.J (θ, x, y), with respect to an input malware binary, is used to generate a new binary 
that maximizes loss. This can be represented using the following equation: 

.x′ = x + ε ∗ sign(∇xJ (θ, x, y)) (2)
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Here, x is the original malware binary, y is the binary’s original label, . ε is a 
constant multiplier used to control the size of the perturbations, . θ are the model’s 
parameters and J is the loss function with respect to original malware binary. The 
main goal is to create a new malware binary . x′ that maximizes the loss function. 
This can be achieved by appending a certain number of bytes, namely numBytes in 
the form of random bytes to a malware binary and updating their values (as dictated 
by Eq. (2)) in an iterative fashion with the binary moving further away from its 
original label with each iteration. In this case, The number of bytes appended with 
each iteration is set to 100, while the number of iterations is similarly set to 100. 
With MalConv, the model is not differentiable end-to-end as the input bytes are 
mapped to an 8-dimensional vector in the embedding layer, and therefore computing 
the gradient is not possible. To overcome this issue, as proposed in [28] and [56], 
the gradient-based updates of the appended bytes are performed in the embedding 
space and then the updated byte value is mapped to the nearest byte value along the 
direction of the embedding gradient. 

Benign Byte FGSM This attack is very similar to the aforementioned FGSM attack 
except that instead of adding numBytes in the form of random bytes, it adds benign 
byte portions from a randomly selected file from the set of benign files. The byte 
values are then updated iteratively over numIterations  using Eq. (2). 

7 Performance and Robustness Evaluation 

In this section, we evaluate the performance of our image-based malware classifier, 
followed by the overhead analysis. Afterward, we assess the robustness of our model 
against adversarial attacks. 

7.1 Performance Analysis 

To analyze the performance of our model, we compare our image-based classifier 
against MalConv in terms of classification accuracy and overhead analysis. 

7.1.1 Classification Accuracy 

To evaluate the classification accuracy of our image-based malware classifier, we 
considered several accuracy metrics including accuracy, precision, recall, and F1-
score. Then, we compared these metrics with MalConv. In Table 1, we report the 
numerical results of calculating each of these metrics for both classifiers.
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Table 1 Accuracy metrics for both classifiers 

Accuracy (%) Precision (%) Recall (%) F1-score (%) 

MalConv 95.29 95.26 95.32 95.28 

Image-based classifier (ours) 96.30 95.30 96.27 96.27 

We remark that image-based classifier and MalConv have similar performance 
in every category. Both detection models achieve an average detection accuracy of 
95.8%. 

7.1.2 Overhead Analysis 

We monitored the overhead of our image-based malware classifier and compared 
it to MalConv. We remark that the majority of the overhead was incurred during 
the training and pre-processing stages of the CNN. This preprocessed dataset was 
stored in virtual memory as an array of arrays, taking up a total of 5.82 GB of 
space. The total execution time to train the model on our system was 12 minutes 
and 52 seconds with an average RAM usage during training being 36.81% or 5.89 
GB. With MalConv, the total execution time to train the model on the same dataset 
was 12 minutes and 41 seconds with an average RAM usage during training being 
43.62% or 6.98 GB. This is approximately a similar duration in training time and a 
18.5% increase in RAM usage as compared to our image-based classifier. 

7.2 Robustness Analysis 

To evaluate the robustness of our classifier against adversarial attacks, we generated 
adversarial samples using each of the four attack methods described in Sect. 6. 
Subsequently, we tested these attacks on our classifier to measure the evasion rate. 
Finally, we compared the experimental results of the evasion rates of the attacks 
when applied to MalConv. To guarantee a fair comparison, we trained MalConv 
with the same validation split as the image-based classifier (i.e., we trained and 
tested MalConv on the same samples as the image-based classifier). In addition, we 
applied the methods used to create adversarial samples to the validation set to ensure 
that adversarial samples were created from malware binaries that the model had not 
been trained on. In Table 2, we show the evasion rate of each of the four attacks 
when tested against MalConv and our image-based classifier. 
In Table 2, we provide insights regarding the evasion rate of our Image-based 
classifier as well as MalConv against four different adversarial attacks. We remark 
that the Random Byte Append attack achieves a relatively high evasion rate 
of 54.66% compared to the Image-Based classifier with 5.66%, suggesting its 
robustness against the Random Byte Append attack. Similarly, the Benign Byte



On the Robustness of Image-Based Malware Detection Against Adversarial Attacks 371

Table 2 A comparison of the 
evasion rates of the 
adversarial attacks when 
applied to MalConv and our 
image-based classifier 

Evasion rate (%) 

Adversarial attacks MalConv Image-based classifier 

Random append 54.66 5.66 

Benign append 44.22 5.11 

Random FGSM 55.18 100 

Benign FGSM 55.19 46.69 

Append attack exhibits a lower evasion rate of 5.11% for the Image-Based classifier 
while it has a high evasion rate for MalConv of 44.22%. However, the Image-
Based classifier fails against the Random FGSM attack while MalConv still has 
less vulnerability with an evasion rate of 55.18%. This could be explained by the 
model’s sensitivity to random perturbations, and by preprocessing data into images, 
which can be easily evaded through gradient-based attacks. For the Benign Byte 
FGSM attack, the Image-Based classifier is more robust than Malconv, where the 
attack has an evasion rate of 55.19% for MalConv and 46.09% for the Image-
Based classifier. Given these results, we can conclude that the image-based classifier 
performed substantially better than MalConv and remained robust to adversarially 
generated perturbations across most adversarial malware generation methods. 

8 Discussion 

In this section, we discuss the underlying reasons behind the performance of our 
image-based classifier, the choice of attacks, and finally, the benefits of our study. 

Understanding the Robustness According to the obtained results, it is apparent 
that the image-based malware classifier remained in most cases robust against 
adversarial malware samples. The underlying reason for this performance is that the 
perturbations are added to the end of a malware binary. As a result, when the binary 
is converted into a gray-scale image, the majority of the image remains identical to 
the original unperturbed sample. This allows the classifier to correctly predict the 
class of malware the adversarial sample belongs to. 

Preserving Malware Functionality The adversarial samples created against Mal-
Conv in this method ensure that the malware binary is modified and the malware 
functionality is preserved. In the case of an image-based classifier, if adversarial 
samples are created for the image-based classifier, they would be adversarial image 
samples and not adversarial malware samples. Even if these adversarial images were 
converted back to binaries, there is no guarantee that the original functionality of 
the malware is preserved. This is because adversarial ML attacks on images are 
not localized to specific regions of the image (i.e perturbations can be added in 
any region of the image), and this may alter the malware functionality as these 
perturbations could correspond to adding bytes to executable portions of malware 
code.
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Choice of Attacks Although there are a variety of attacks in the literature that 
claim to generate adversarial malware, the attack methods chosen for this study 
are the only ones that undoubtedly retain the malware functionality. In addition to 
retain the malicious functionality, we considered two black-box attacks as novel 
techniques not seen in previous literature. Methods aside from the byte-append 
attacks described in Sect. 2, such as feature modification attacks [2, 9, 10, 16, 30] and 
malicious code append attacks [16, 51] do not guarantee the preservation of malware 
functionality. Moreover, the testing of functionality for adversarial malware samples 
crafted from these methods would be difficult as it would require dynamic analysis 
in a sandbox environment and a significant portion of malware samples do not run 
in such virtualized environments [54, 61]. This is done in order to hinder dynamic 
analysis and prevent malware testers from extracting run-time features of malware 
samples. 

Benefits Our image-based malware classifier outperformed MalConv, a widely 
used raw-byte-based malware classifier substantially in most of the recorded 
accuracy metrics. It remained robust to most of the adversarially crafted malware 
samples across different attack settings. In addition, since all adversarial malware 
samples retained their malicious functionality, our image-based classifier was tested 
under realistic circumstances. 

9 Conclusion 

As the number of malware samples in the wild increases at an alarming rate, 
adversaries continue to discover means to mask malware with perturbations to 
evade malware classifiers. In this chapter, we assessed the robustness of CNN-
based image classifier against adversarial attacks that preserve the functionality of 
the malware in black-box and white-box settings. The results of our study indicate 
that our image-based classifier outperformed the state-of-the-art ML-based malware 
classifier, MalConv, in most of the attacks. Our proposed technique is resilient to 
some extent against adversarial attacks and can pave the way for the development of 
other malware detection mechanisms that are resilient to adversarial perturbations. 
The performance evaluation of our classifier demonstrated a similar RAM usage 
during the training process, highlighting its effectiveness and practicality. In future 
work, we aim to investigate the effectiveness of adversarial samples that modify or 
append bytes to regions of the malware binary besides the end of the file. 
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The Cost of Privacy: A Comprehensive 
Analysis of the Security Issues in 
Federated Learning 

Agnideven Palanisamy Sundar, Feng Li, Xukai Zou, and Tianchong Gao 

1 Federated Learning Basics 

Let’s first start with the origin and the need for Federated Learning. We will also 
look at some of the common applications of FL, followed by a brief discussion of 
the vanilla implementation of a widely used FL algorithm. 

1.1 What Is Federated Learning? Why Do We Need It? 

To understand what FL is and the need for FL, we first need to understand Machine 
Learning as a whole. Machine Learning (ML) is a subset of Artificial Intelligence 
(AI) that focuses on the development of algorithms and models that enable 
computers to learn from and make predictions or decisions based on data without 
being explicitly programmed [22, 70]. At its core, machine learning revolves around 
the idea of training a model using data to recognize patterns, make predictions, or 
take action. Though ML was conceptualized in the 40s [34], its mainstream adoption 
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happened much later, around the 2010s. During this time, there was a convergence 
of several factors that contributed to the widespread popularity and application of 
ML techniques. The most important factor was the availability of large datasets. 
Additionally, data storage and processing technology advancements made it more 
feasible to handle and analyze these large datasets. Another crucial factor was 
the development of a more powerful and scalable computational infrastructure. In 
essence, to build a good ML model, the two key factors are the availability of high-
quality massive datasets and the computational resources powerful enough to handle 
the training process on the vast dataset. 

If someone or a company has a small dataset and wants to create a good ML 
model, they may face some challenges. One option is to build a model with the 
limited dataset they have. However, this may result in the model not performing 
as expected or overfitting the training dataset. Another option is to combine data 
from multiple individuals with similar small datasets on a central server to create 
a larger dataset suitable for building an ML model. Although possible, this method 
has its drawbacks. Some data, such as hospital patient information, cannot be shared 
with others due to privacy and security concerns. Additionally, recent GDPR [8] and 
CCPA [5] regulations prevent companies from sharing consumer data with others. 
Moreover, combining data from different entities may lead to communication 
overhead related to data sharing. Fortunately, Federated Learning offers a solution 
to these problems. 

In 2016, Google published a paper titled “Communication-Efficient Learning of 
Deep Networks from Decentralized Data” [35], which coins the term Federated 
Learning, and describes it as a method “that leaves the training data distributed 
on the mobile devices, and learns a shared model by aggregating locally-computed 
updates”. To elaborate, FL is an ML strategy where individual participants/clients 
do not have to share their local dataset in order to build a combined model. Instead, 
the clients build a local model based on their local data and share the model updates 
with the central server. The central server aggregates the model updates and sends 
them to the participating clients. The aggregated model is known as the global model 
and effectively has a performance similar to a model built by combining all the data. 

Federated Learning is highly privacy-preserving as the training data never has to 
leave the owners’ premises. Additionally, instead of a single server trying to build 
a model with a massive dataset, FL allows for the computational overhead to be 
distributed among all its clients. So, no individual entity has to carry the burden 
of building a huge model, reducing the strain on their resources. Likewise, the 
communication overhead is also reduced since the model updates are much smaller 
in size than the actual data in most cases. A combination of these benefits is slowly 
leading to the widescale adoption of FL.
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1.2 Applications of Federated Learning 

From the discussions earlier, it is clear how FL can be a helpful asset in various 
scenarios. To drive home the benefits of FL, we will look at some of the practical, 
real-world applications of FL. The applications of FL are far and wide, and this list 
is in no way complete. 

1.2.1 Healthcare 

Collaborative model training using patient data from multiple healthcare providers 
can be achieved through federated learning without centralizing sensitive medical 
records. This approach enables hospitals or research institutions to develop strong 
models for disease prediction, personalized medicine, or anomaly detection while 
maintaining patient privacy [48, 63]. 

1.2.2 Internet of Things 

FL is well-suited for IoT environments where numerous edge devices generate data. 
By training models locally on these devices, federated learning can improve IoT 
applications such as smart homes, energy management, predictive maintenance, and 
anomaly detection without transmitting sensitive data to a central server [24, 39]. 

1.2.3 Mobile Devices 

FL is particularly relevant for mobile devices, where privacy concerns are 
paramount. Applications like personalized recommendations, language translation, 
keyboard prediction, and voice recognition can leverage federated learning to train 
models on user devices without compromising data privacy. Google’s GBoard 
keyboard used FL for next-word prediction without sending a user’s typing history 
directly to Google servers [18, 64]. 

1.2.4 Smart Grids 

Smart grid systems can benefit from federated learning as it can optimize energy 
consumption and grid management. The system can collectively learn patterns, 
forecast demand, and improve energy efficiency by training local models on 
distributed sensors and meters. This is achieved without having to transmit granular 
energy consumption data to a central authority, thus ensuring privacy and security 
[50, 52].
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1.2.5 Autonomous Vehicles 

One way to improve the safety and functionality of autonomous vehicles is through 
federated learning. This approach allows models to be trained using data from 
multiple vehicles while still maintaining the privacy of sensitive information such 
as specific routes and locations. Collaborative training on individual vehicle devices 
can enhance object recognition, path planning, and overall safety [41, 46, 66]. 

1.2.6 Finance 

Federated learning can be employed in the financial sector to build predictive models 
while ensuring the confidentiality of customer data. Banks or financial institutions 
can collaborate to develop fraud detection models or credit risk assessment models 
by training them locally on their respective datasets without sharing sensitive 
customer information [32]. 

1.3 Workflow of a Federated Learning System 

The two essential entities in an FL system are the clients and the server. There can 
be multiple clients, but usually, only one central server acts as the aggregator. FL is 
a multi-round process that typically involves repeating the following steps. Step 1 is 
needed just for the first round of the FL process. Only steps 2 and 3 are repeated for 
all further rounds until the model converges. Figure 1 depicts the steps involved in 
the process. 

Step 1: Server-end Operation. In the first round of the FL process, the central 
server, also known as the aggregator, randomly initializes a global model, . G0, 
which denotes the global model at round 0. This randomly initialized model and 
the parameters needed to train the local models are sent from the server to either 
a selected subset of clients or all the clients in the FL system. 

Step 2: Client-end Operation. Once the clients receive the global model from the 
server, they use their local data to train on top of the global model based on the 
hyperparameters from the server. This model is known as the local model denoted 
by . Ct

i , indicating the client i’s model update in round t . After a stipulated number 
of local epochs, the client calculates the difference between the received global 
and local models .(Ct

i − Gt−1). Here, .Gt−1 is the global model calculated in the 
previous round. This difference is then sent back to the server. Sending just the 
difference reduces the overall communication overhead. 

Step 3: Server-end Operation. Upon receiving the updates from all the clients 
participating in that round, the global server calculates the updated global model 
based on an aggregation rule. This aggregation could be as simple as Federated-
Averaging (FedAvg) [35], where the local model weights from the clients are
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Fig. 1 Steps involved in a basic federated learning system 

averaged to get the global model. 

.Gt = Gt−1 + η

m

m∑

k=1

(Ct
i − Gt−1). (1) 

Here, the current global model . Gt is calculated by taking an average of all the 
model updates’ differences .(Ct

i −Gt−1) submitted by the clients in round t , where 
m is the number of clients in that round, and . η is the learning rate of the global 
model. The aggregation method can also be a variation of FedAvg, with the size 
of the local training data impacting the client’s contribution to the global model, 
or it could involve a more complex process [3, 17, 40, 47]. After obtaining the 
new global model, the server selects a different subset of participants to continue 
the next round. 

1.4 Factors to Consider 

The performance of a Federated Learning System is dependent on the quality of the 
data present with its clients. The general assumption is that all the clients have the 
same computational resources, sufficient to train the models locally. But, having a 
similar assumption about data availability would be unrealistic. Here, we’ll examine 
how the data can influence the FL process.
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1.4.1 Based on Data Distribution 

Consider a 10-class classification dataset in which all the clients in the FL system 
have the same number of data records from all 10 classes. Though it is highly 
unlikely, it is still a possibility, and such a distribution scenario is known as 
Independent and Identically Distributed (IID) data [35]. If the number of data 
records in each class differs for different clients or some of the classes are missing 
in some clients’ datasets, it would be known as a Non-IID dataset [4, 56, 68]. 

In general, dealing with an IID dataset is more straightforward and usually 
gives better performance results than non-IID. But non-IID is a much more 
realistic situation, considering each client collects their data independently. The 
data distribution not only impacts the benign performance of the FL system but 
also affects its attacks and defenses. 

1.4.2 Based on the Type of Feature Division 

So far, we have assumed that the features available with all the clients are identical, 
but the data record is different. In other words, the feature space of the data records 
is similar, but the sample space is different. The common features allow the users to 
build their own local models and combine them in the central server. Such a setup 
for the FL process is known as Horizontal Federated Learning (HFL) [20, 48, 69]. 

Consider a situation where two different clients collect different information 
about the same item/person; that is, the features they collect are different. The 
sample space is the same, but the feature space is different. If this is the case, then 
the clients cannot directly average their model updates but would rather have to 
combine intermediate results and train a new model. Such a situation is known as 
the Vertical Federated Learning (VFL) setup [10, 25, 61]. The attack spaces for HFL 
and VFL are different, and most existing security attacks predominantly target HFL. 
So, we will only focus on HFL security in this chapter. If FL is mentioned anywhere 
in the text, we are talking about HFL, not VFL. 

1.5 Common Threat Model 

Currently, many research works deal with security and privacy issues with FL; 
they are either attacks or defenses on FL. Since different researchers have different 
focuses when they try to apply their methods to FL, it is essential for the researchers 
to follow a standard model to ensure that their method can be replicated in others’ 
works and real-world applications. It also allows the researchers to establish the 
conditions under which their method works as expected. Let’s look at some of 
the common threat model considerations before looking at the issues in federated 
learning in the next section [1, 2, 9, 40, 47]. The stronger the threat model 
assumption, the stronger the attack/defense method.
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1.5.1 Number of Attackers 

Most existing works consider the condition where a group of attackers works 
together to achieve the same attack objective. In most of the existing works, the 
assumption is that the number of attackers is always less than 50% of the total 
participants. In other words, the benign participants are the majority in the FL 
process, which is a realistic assumption in most cases. A weaker assumption would 
be to assume that only one attacker exists in the process. 

1.5.2 Attacker Knowledge 

In general, the attacker is believed to know the protocol used for the FL process, 
including the aggregation algorithm and any existing defense method used by the 
server. Similarly, the attacker does not know the local data or the model updates 
submitted by the benign participants. This is a strong and practical assumption. If 
any of these conditions do not apply, then it would be a weaker assumption, reducing 
its applicability in real-world tasks and its reliability in research works. 

1.5.3 Attacker Capacity 

If there are multiple attackers, it is assumed that they have a private channel to 
coordinate their attacks and control the updates submitted by other attackers. But, 
the attackers do not have control over the submissions made by benign clients. The 
attackers also do not control the order in which the central server selects the clients 
for each round. 

1.5.4 Defender Knowledge 

Generally, the central server is considered the defender. The defender does not know 
which of the participants are malicious and which ones are benign. The defender 
also does not know the size or the distribution of the clients’ local data. Upon 
receiving the model updates, the defender gets access to the gradients of the updates 
submitted by all the clients. In certain defenses, the defender is assumed to have 
a small validation dataset representing the data available to the clients. Though 
practically feasible, it is considered a weaker assumption and is rarely used. 

1.5.5 Defender Capacity 

The defender has the privilege of slightly altering the model updates in an attempt 
to remove the influence of the attack. The defender can also modify the aggregation 
algorithm to protect the performance of the global model. Some defense methods
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assume that the defender can employ clients to help with the defense process. 
Remember that the defender does not know which participants are benign or 
malicious. 

2 Issues With Federated Learning 

Though Federated Learning solves the problems of the small local dataset and large 
communication overhead while enhancing privacy, it comes with its own set of 
issues that concern the adoption of FL in some domains. Generally, an outsider 
attack is what disrupts the regular functioning of many ML protocols, but the 
privacy-preserving nature of FL makes it more susceptible to insider attacks. Most 
issues in FL systems arise from the possibility that some participating clients can 
act maliciously. Based on the attacker’s intent, the issues can be broadly classified 
into three categories: Privacy, Security, and Free-riding. Since this chapter focuses 
on the security issues in FL, we will briefly discuss the privacy and free-rider attacks 
in this section and discuss security problems in detail in the next section. 

2.1 Privacy Issues in FL 

Federated Learning is undoubtedly a more privacy-preserving approach than the 
data centralization-based model-building scheme, but it does not make it immune to 
privacy concerns. A malicious entity posing as a client can try to obtain prohibited 
information through the FL process. The attacker would simultaneously try not 
to deviate from the FL objective. Let’s now look at some of the subcategories of 
privacy attacks [38]. 

2.1.1 Inversion Attack 

Inversion attack or Model Inversion attack is an attack in which the adversary tries 
to reconstruct or extract sensitive information from a trained model. By analyzing 
the model’s outputs or gradients, an attacker may attempt to reconstruct sensitive 
training data or infer private information present in the model [15, 19, 29, 60]. 

2.1.2 Inference Attack 

Inference attack is a subcategory of attack in which the malicious client tries to 
infer some information about the data used for training by other benign entities. If 
a malicious party attempts to determine if a specific sample was part of the training 
data used to build the federated model, it is known as a Membership Inference attack 
[33, 67]. If an adversary attempts to infer sensitive information about the training
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data used by a specific client based on the model updates exchanged during the 
federated learning process, it is called a Data Inference attack [12, 55]. 

2.2 Free-Rider Issues in FL 

A free-riding attack is a more straightforward attack that does not affect the model 
performance or client privacy by any means. When a participating client does not 
contribute any useful update to the aggregation process, it is known as a Free-rider 
attack [11, 30, 58]. The attacker refrains from contributing useful updates based 
on their local data but wants to obtain the model build based on the other client’s 
datasets. In its simplest form, the attacker updates the difference between the current 
global model and the previous one as their local update, adding no value to the FL 
process. Though this might seem harmless, it robs the other benign clients of the 
ability to learn usable traits from the attackers’ dataset. 

3 Security Attacks on Federated Learning 

Apart from attempting to invade the privacy of innocent clients in the FL system, the 
attackers have other goals. In terms of security concerns, the attacker does not aim 
to deduce prohibited data but instead aims to disrupt the anticipated function of the 
global model. This disruption can impact either the overall Main Task objective of 
the model or only a small portion of it. The term Main Task objective describes 
the anticipated actual outcome of the FL process. Essentially, it is the expected 
performance of the global model that all participating clients are striving towards. 

Figure 2 shows how a security attack for the FL workflow is executed during 
step 2. Once the attacker receives the global model from the central server, he uses 
his poisoning methods to retrain the global model. This retraining causes the local 
update to remember the negative traits of the poison. Then, the attacker sends back 
the poisoned model update to the central server. During the aggregation process, 
the negative traits from the poisoned model updates manage to seep into the global 
model. The redistribution of the global model propagates the poisoned model to all 
the participating clients. 

We can classify the security threats to FL based on the attack’s objective and the 
attack’s approach. 

3.1 Based on Attack Objective 

As mentioned earlier, an attacker can either try to disrupt the Main Task of the global 
model or include a backdoor to alter the model’s functioning. The former attack 
objective is called a Byzantine attack; the latter is known as a Backdoor attack.
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Fig. 2 Execution of a security attack in Step-2 of the FL process 

3.1.1 Byzantine Attack 

The aim of the malicious entity is to prevent the convergence of the global model. 
The convergence of the global generally implies that the Main Task objective of the 
FL process has been achieved, and the model is ready to be deployed. By executing 
a byzantine attack, the malicious client aims to render the global model useless, 
wasting the computation and communication resources of the benign participant and 
the central server [6, 9, 49]. The malicious participant may intentionally manipulate 
its model updates or gradients to mislead the aggregation process or introduce 
erroneous information. 

3.1.2 Backdoor Attack 

Unlike Byzantine attack, a backdoor attack tries to maintain the Main Task objective 
for most cases, except for a small subset of data records. Backdoor attacks involve 
manipulating a model to misclassify input records into a category the attacker selects 
[2, 51, 57, 62]. The attacker typically implants a small trigger pattern in a subset of 
the local training dataset and relabels it as the desired target category. This allows 
the local and global models to associate the pattern with the mislabeled category 
and misclassify data records containing the trigger. Without the trigger, the model 
functions benignly and achieves its Main Task objective. However, the presence of 
the trigger acts as a backdoor and causes the model to misclassify the data record. 

.

f (x) −→ y

f (x + τ) −→ y′ (2) 

Here, x represents the original data record, while y is its corresponding true 
label. By training model .f () with the backdoor trigger, it behaves normally when
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the trigger is not present. However, once the trigger . τ is embedded in the input 
data record, the model incorrectly classifies it as the attacker’s selected target 
category, . y′. 

3.2 Based on Attack Approach 

Based on the method the poison is injected into the model, we can classify the 
attacks into two categories. These approaches can be used for both byzantine and 
backdoor objectives. 

3.2.1 Data Poisoning 

One way to attack the model is to poison the data used for training the model 
[42, 53, 62]. Based on the objective, whether it is byzantine or backdoor, the extent 
of poisoning varies. The most straightforward data poisoning attack to achieve 
the byzantine goal is mislabeling all the training records, forcing the model to 
move away from the global objective. When the poisoned model is aggregated 
with the other benign models, it causes the global model to deviate from the Main 
Task objective. Likewise, the simplest backdoor data poisoning attack involves 
embedding a small trigger pattern onto a subset of input data and relabeling the 
data to the target class. Data poisoning attacks can be detected if the central server 
has access to the training data, which breaks the FL’s protocol. This situation makes 
FL a suitable target for data poisoning attacks. 

3.2.2 Model Poisoning 

Only altering the data may sometimes not be sufficient to corrupt the global model 
completely. As you can recall, the global model is an aggregation of all the updates 
submitted in any given round, implying that the poisoned model only contributes to a 
small portion of the global model. In some instances, it will not lead to a successful 
attack. One way to improve the attack’s efficiency is to use the model poisoning 
approach. Model poisoning directly manipulates the weights and gradients of the 
attackers’ model update to replace the influence of the benign participants [6, 7, 71]. 
The model updates are altered in such a way that the poisoned model replaces 
the original global model in just a few rounds. When the objective is byzantine, 
the initial model poisoning attack strategy works by changing the direction of the 
gradients to be opposite to the gradients of the global model, effectively preventing 
convergence. Similarly, for backdoor attacks, the model weight of the poisoned 
model is rescaled to be much larger than benign models. Such rescaling overvalues 
the poisoned model during aggregation, effectively replacing the global model with 
the poisoned model.
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Fig. 3 An example of how the attack objectives and attack approaches are combined to execute 
an attack 

Figure 3 shows an example of how both data and model poisoning can be 
combined to execute both byzantine and backdoor attacks. It is impossible to 
combine byzantine and backdoor attacks similarly because of their contradicting 
effects on the Main Task objective. A byzantine attack wants to reduce the Main 
Task performance, while a backdoor attack wants to maintain the performance. 

4 Impact of Attacks on FL 

So far, we’ve looked at how a security attack is carried out in an FL system. We also 
have an understanding of why and how the attacks are executed. Now, it is time to 
learn how to defend against such security attacks. But, before we can defend, it is 
essential to know the influence of these poisoned models based on their objective 
and approach. Now, let’s look at how these attacked models differ from benign 
models perceptible by the global server on a gradient-update level. Irrespective of 
the objective of the attack, the attackers’ gradient update should deviate from the 
benign models in one or both of the following ways for the attack to be effective. 
We will use a high-level two-dimensional representation of the model updates for 
demonstrations to make it easier to follow. 

4.1 Angular Deviation 

Whenever an attacker works toward a particular objective, be it byzantine or 
backdoor, the attacker tends to overtrain the model with the poisoned dataset. Such 
overtraining is necessary to counter the impact of the benign updates in the global
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(a) (b) 

(c) 

Fig. 4 (a) Angular deviation: the vector angle of the gradient updates of attacked models are far 
from the benign models. (b) Magnitude deviation: The attacker updates’ gradients have a higher 
magnitude than the benign models. (c) Shows a weak attack that only causes a minor deviation 
from benign behavior: . by is byzantine, . ba is backdoor, . b is byzantine/backdoor,. w is benign, . G is 
the global model gradient vectors 

model [40]. Data poisoning attacks generally lead to a smaller angular deviation in 
the case of backdoor attacks and a relatively more significant deviation for byzantine 
attacks [13]. Angular deviations can be caused by the following:

• High number of local epochs when training with the poisoned dataset.
• The ratio of poisoned data in the training dataset is much larger than the benign 

data.
• The gradient updates are manipulated to move in the opposite direction of the 

global model gradients in the case of byzantine attacks. 

In Fig. 4a, the green dotted line represents the approximate angular deviation 
limit, beyond which an update is considered harmful to the global model . G. Here, 

.
−→
byi represents the byzantine model updates, and .

−→
bai shows the backdoor model 

update. Generally, the byzantine model updates tend to deviate further from the 
benign expectation as they oppose the global model’s Main Task performance. The 

angle . α between .
−→
by1 and .

−→
by2 shows that the attackers working together build similar 

poisoned models. If this angle is large or random, then there is a chance for the 
malicious updates to cancel out each other.
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Many defense strategies use some form of clustering approach to segregate 
benign updates and poisoned updates. The poisoned updates are usually discarded 
upon separation, while the benign updates are used from aggregation. The issue 
with using angular deviation to discard the poisoned models is the possibility of 
omitting benign models, which might be an outlier. If the data distribution of a 
client is highly Non-IID, or if the training data features are unique compared to the 
other clients, it could lead to the client’s model updates deviating from the expected 
range. If, unfortunately, such outliers are considered anomalous and discarded, then 
the global model does not learn those unique features, which is a loss for all the 
clients. 

4.2 Magnitude Deviation 

Magnitude deviation is more often a result of model poisoning than data poisoning. 
Whenever an adversary aims to amplify its presence in the global model or replace 
it with the poisoned local model [2, 40], the adversary can scale up its local 
gradient updates before submitting it to the server. The primary cause for magnitude 
deviation is: 

. • Scaling up the poisoned model in backdoor attacks, usually after minor angular 
deviation. 

. • Modifying the gradient updates to move it further from convergence in byzan-
tine attacks. Scaling is used in byzantine attacks to undermine the contributions of 
benign clients. 

In Fig. 4b, the red dotted semicircle represents the magnitude threshold of the 
gradient updates, beyond which the update would be considered an attack. The 
defense against magnitude deviation mainly involves clipping the updates to ensure 
that it matches the rest of the updates submitted by the clients. Though clipping does 
not entirely remove the poisoned update, it manages to mitigate the influence of the 
malicious model in the aggregation process. 

4.3 Minor Deviation 

If an attacker does not want to be detected, he will be more cautious about the extent 
of angular and magnitude deviations. To be undetected, the attacker must alter their 
malicious models to stay within the threshold values. Assuming that the defense 
method has found the best threshold to limit the influence of the poisoning model, 
the influence of the attack model will be minimal. Such a minimal influence ensures 
a negligible attack success rate. Even if the attacker manages to induce an attack 
with minor deviations, its effect will deteriorate over the next few rounds, making 
the global model benign again [17]. Fig. 4c shows a weak attack, which is not highly 
deviant from the expected benign behavior.
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5 Common Defense Methods 

Since the behavior of a malicious model has peculiar traits that can be used to 
distinguish them, researchers have developed some common defense strategies to 
mitigate the effect of the attack. Let’s look at some common defense steps applied 
to most known attacks. 

5.1 Clustering 

When the attacker’s model tries to move the global model away from its Main Task 
objective, it tends to have a sizeable angular deviation. This angular deviation can 
be used to group and separate benign behavior from malicious behavior. Clustering 
is the technique used to carry out this separation [21, 28, 40, 47]. Clustering works 
by grouping so that more than 50% of the participants who are closer in terms of 
model updates are grouped together and assigned to be the benign group. Such an 
assignment is acceptable because of the general research assumption that only less 
than 50% of the participants are malicious. The fate of the members in other clusters 
will be decided by the defense method, with many methods discarding the suspected 
malicious cluster. Figure 5 shows a toy example of how clustering works. 

5.1.1 Downsides of Clustering 

This defense strategy has used many clustering methods, including k-means clus-
tering, DBSCAN, and HDBSCAN. The parameters used for each technique play a 
crucial role because of the possibility of removing unique benign client updates. If 
the clustering rule is too strict, it could lead to a higher false positive rate, and if the 
rule is not strict enough, it leads to a high false negative rate. Similarly, clustering 
techniques can be detrimental when the client data distributions are highly non-
IID. Non-IID distributions lead to more pronounced angular differences between 
the benign clients. In such cases, if the malicious participants manage to increase 
their similarity with some benign clients, they could be falsely considered benign. 

Fig. 5 Toy example of clustering
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Fig. 6 Toy example of clipping 

5.2 Clipping 

Similar to how clustering defends against angular deviation, clipping defends 
against magnitude deviation. This method works by selecting a threshold value 
for the magnitude and clipping the scale of the updates whose magnitudes go 
beyond this threshold value [17, 40, 44, 47]. Unlike clustering, where the potentially 
malicious model updates are entirely discarded, many clipping-based methods 
rescale the possible malicious update to match the threshold value. This alleviates 
the impact of the poisoned update in the global model. Figure 6 shows a toy example 
of how clipping is applied. 

5.2.1 Downsides of Clipping 

When it comes to selecting the threshold value, many defense methods take the 
median magnitude of all the submitted updates as the threshold. This simple 
approach leads to the rescaling of many of the benign updates as well. If the defense 
fixes the threshold to be static throughout the FL process, then the clipping strategy 
will not accommodate the dropping magnitude values as the model gets closer to 
convergence. Clever attackers use this situation to try to match the magnitude of 
their poison update to the threshold value to avoid detection. To prevent this, the 
defenders can also choose to have a dynamic threshold value that changes for each 
round of the FL process. It is generally challenging to select a suitable threshold 
that does not impact the benign updates, even under non-IID conditions, while only 
targeting poisoned models.
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5.3 Similarity Checking 

Similar to clustering, similarity checking also relies on the intention of the attackers 
to be closer together. Malicious clients working together with the same objective 
exhibit a high degree of similarity. The angle between malicious gradient updates 
(. α in Fig. 4a) will be smaller than that between benign and malicious updates. This 
feature is captured using cosine similarity or other such approaches. Highly similar 
models’ contributions are neglected [13, 14, 59]. 

5.3.1 Downsides of Similarity Checking 

Though this is a simple approach, it can be computationally costly. In many cases, 
the similarity checking is carried out pairwise, which would increase exponentially 
with the increase in the number of clients. Since similarity checking and clustering 
capture the angular deviation, clustering is more efficient unless the number of 
clients is small. Similarity checking might not be efficient in detecting backdoor 
attacks, as they are predominantly focused on byzantine attacks. 

5.4 Noise Addition 

Another way to defend against poisonous models is to add Gaussian noise to all 
the client updates [23, 40, 51]. This method is similar to applying a differential 
privacy strategy to the model updates. This technique is usually effective against 
backdoor attacks but not against byzantine attacks. Byzantine attacks do not have 
any performance objective other than to disrupt the Main Task objective. So, adding 
noise would not have a significant impact on the attack. On the other hand, backdoor 
attacks try their best to maintain the Main Task objective while simultaneously 
trying to achieve the backdoor objective. So, backdoor model updates need to be 
as precise as possible to achieve both tasks. Adding noise to the model update 
effectively reduces the precision of the backdoor model. The reduced precision 
leads to a reduction in both Main Task and backdoor performance. But, during 
the aggregation process, the Main Task performance is improved because of the 
contribution from all the clients. In contrast, the backdoor performance is effectively 
nullified. Figure 7 shows a toy example demonstrating how noise addition functions. 

5.4.1 Downsides of Noise Addition 

The noise level is the key parameter needed for noise addition to work as expected. 
Selecting the appropriate noise level suitable for all the client updates is crucial. If 
the noise level is l too low, it might not be enough to remove the backdoor. On the



394 A. Palanisamy Sundar et al.

Fig. 7 Toy example of noise addition 

contrary, if the noise level is too high, it would negatively impact the overall Main 
Task performance of all the clients, affecting the global model. Thus, each defense 
strategy selects a different approach to determine the noise level. 

5.5 Robust Aggregation 

FedAvg performs a simple weighted averaging to build the global model. This 
vanilla aggregation method provides no defense against security attacks. So, many 
researchers have focused on modifying the aggregation scheme to make it more 
robust against security threats [16, 26, 27, 43]. The robust aggregation method works 
better with a byzantine attack than a backdoor attack. Let’s look at some of how 
robust aggregation is applied: 

5.5.1 Selecting a Subset from Submitted Models 

Instead of aggregating all the received models, the server uses some method to select 
a smaller subset of updates that form the global model. In Krum[3], only one of 
the local models submitted by the client, which is closest to most other models, 
is selected as the global model. Other methods like [36] add another parameter 
trimming step to improve Krum. 

5.5.2 Truncating the Weights of the Updates 

In this approach, the global server removes the extreme values in the model 
weights from contributing to the global model. In Trimmed Mean [65], each model
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parameter is independently sorted, and the extreme values are removed before 
calculating the mean as the global model parameter. 

5.5.3 Replacing Simple Averaging 

Federated Averaging and other similar averaging methods make it easier for 
attackers to replace the global model with their attacked model by scaling up their 
updates. Replacing the averaging strategy with a different approach, like using the 
geometric mean for aggregation [45]. 

5.5.4 Downsides of Robust Aggregation 

Depending on how strict the aggregation algorithm is, robust aggregation methods 
tend to affect the Main Task performance negatively. Moreover, many of the robust 
aggregation schemes work well against traditional byzantine attacks but not with 
backdoor attacks. Some older yet widely used robust aggregation algorithms work 
well only with IID datasets. If the dataset is highly non-IID, truncation or subset 
selection would lead to losing precious information. 

6 Some State-of-the-Art Backdoor Defense Techniques 

This section will examine some existing SOTA defenses against backdoor attacks 
on FL. We can categorize these defenses based on who contributes to the defense 
process. 

6.1 Protocol-Level Defenses 

In this category, the server and the clients work together to defend against the 
backdoor attack. The whole FL process is modified to accommodate the additional 
defense steps. The clients’ involvement could range anywhere from verifying the 
global model to voting to detect the backdoor model. 

In [1], the server employs the clients and leverages the diverse dataset available 
with each client to detect the presence of backdoor attacks in the global model. This 
FL process includes a feedback loop that allows the clients to test the model sent 
from the server against their local datasets and predict the presence of a backdoor 
attack. This method ensures a high detection rate and a low false positive rate. In 
[37], the server requires the clients to rank the randomly initialized parameters sent 
to them by the server. The clients use their local training data to rank the parameters 
and send it back to the server, where the server aggregates the parameter rankings 
using a voting scheme.
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6.2 Server-Level Defenses 

This is the most common type of backdoor defense strategy. In this method, clients 
do not contribute to the defense in any way. The clients follow the regular FL 
steps, as they would with FedAvg aggregation, without any change to the process. 
But, the server applies a series of strategies to detect the presence of backdoor 
model updates. The most efficient server defenses use a combination of clustering, 
clipping, and noise addition to mitigate the presence of the backdoor completely. 

In [47] and [40], the central server is solely responsible for mitigating the attack 
without the help of the clients. Both these methods use some combination of 
clustering and clipping to remove the malicious updates present in the system. In 
[13], a similarity checking method is used to find the similarity in consecutive model 
updates to differentiate byzantine malicious clients from benign clients. In [17], the 
authors change the threshold used for the clipping process in each round of the FL 
process based on the extent of convergence. 

6.3 Client-Level Defenses 

One of the reasons to use the FL approach is to prevent the central server from 
accessing the client’s private data. If data privacy is not a concern, the clients can 
directly send their datasets to the central server. The existence of FL proves that the 
central server is not entirely trustworthy. If the clients do not trust the central server 
with their privacy, why should they trust the central server with their security? So 
far, there have not been any client-level defenses exclusively for FL setup. Still, the 
clients can extend some of the backdoor defenses from the traditional ML approach 
for their defense. In client-level defense, each client can autonomously protect their 
models from backdoor attacks. 

NeuralCleanse [54] is a trigger reconstruction technique used to detect the 
features in an input that are responsible for the prediction outcome. If a trigger 
was responsible for predicting a specific input, then the responsible feature would 
be tiny and can be distinguished as a backdoor trigger. In [31], the authors treat 
the trigger pattern recovery problem as an unknown noise distribution extraction 
problem. Additionally, they also reverse the backdoor injection procedure and force 
the model to unlearn the malicious injection. Though these are independent ML 
defense methods, clients can adapt them in an FL system with acceptable success. 

7 Opportunities and Future Directions 

Though security in FL is a widely studied field of Machine Learning, it is still in 
the early stages of wide-scale adoption. Such widespread usage would bring further
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problems that need to be analyzed and addressed. In this section, let’s look at some 
of the regions that can use further research in FL security in the future. 

7.1 Beyond Text and Image 

So far, the attacks and the defenses in FL research have mainly been focusing on the 
models which only work with either text or image domains. Federated Learning 
has the potential to be applied to the audio and video domains as well, but the 
research focusing on these domains is insufficient. If researchers do not focus on 
these domains, any real-world attack being executed in these domains might go 
undetected. 

7.2 Beyond Single-Domain 

Federated Learning is usually applied only to build models that handle one domain 
of input, either text or image. Given the rapid growth of AI, the models are evolving 
to handle multi-domain inputs. The security requirements of multi-domain models 
differ from those of single-domain models. Handling the security aspects of multi-
domain FL is an important future direction. 

7.3 Beyond Security Impacts 

Currently, the privacy and security of FL are treated as two independent issues. But, 
both privacy defense and security defense significantly alter the FL process without 
analyzing its impact on the other issue. It is important to understand the privacy 
implications of a security defense and ensure that the enhanced security does not 
lead to excessive privacy leakage. 

7.4 Beyond Horizontal Federated Learning 

The majority of the existing research works primarily focus on the horizontal 
federated learning setup. Due to its popularity and earlier implementation, HFL 
is more widely used than VFL, and hence the imbalance in the research focus 
is justified. But, this situation may not persist; VFL could also have broader 
applications in the near future.
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7.5 Need for Client-Level Defenses 

As mentioned earlier, there are not many client-level defenses designed specifically 
for the FL setup. Considering that the server could also act as a malicious party, it is 
evident that the clients need an effective and efficient defense mechanism. Extending 
regular ML solutions to FL is a costly process, further emphasizing the need to 
client-level protection. 

8 Conclusion 

In this chapter, we gave a systematic review of the security issues in Federated 
Learning systems. We started with the basics of Federated Learning, followed by the 
need for FL, application of FL, the application of FL, the workflow of a standard FL, 
and other factors that influence its performance. Similarly, we briefly discussed the 
common threat model, and the privacy and free-rider issues in FL. In the deep dive 
we took into the security threats to an FL system, we analyzed the types and impacts 
of the attacks. We also learned how the defense methods utilize these impacts to 
design necessary modifications to the aggregation process. From our analysis, we 
can understand that Federated Learning will continue to grow, and it is essential to 
be prepared to defend against new potential security threats that may occur later on. 
In the future, the security concerns of FL cannot be treated as an independent entity 
but as a crossover of all the aspects of FL. 
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Lessons Learned and Future Directions 
for Security, Resilience and Artificial 
Intelligence in Cyber Physical Systems 

J. Sukarno Mertoguno, Gregory Briskin, Jason H. Li, and Kyung Kwak 

1 Introduction 

Cyber physical systems (CPS) underlie many critical infrastructures and are preva-
lent across a wide range of areas including the electrical grid, factory production 
pipeline, machinery control, vehicular control, internet-of-things (IOT) devices, and 
commodity toy drones, just to name a few. By its nature, a CPS straddles the 
continuous-time physical domain and the discrete-time digital or cyber domain. 
Cyber components (e.g., communication and computing) couple with physical 
components (e.g., sensors and actuators) to carry out the intended functions of the 
CPS. 

Cyber physical systems are required to satisfy safety constraints in various 
application domains such as robotics, unmanned vehicles (e.g., aerial or ground), 
industrial manufacturing systems, and power systems. However, the once isolated 
system of computer-controlled machinery is now more exposed to the external world 
than ever, which renders ample opportunities of remote system disruption via cyber 
threats, in addition to the tradition threat of a physical component failing. Both may 
result in safety violations. 

Current emphasis on cyber security of CPS is on securing the operational tech-
nology (OT) network. For example, National Institute of Standards and Technology 
(NIST) devoted its guidance for securing CPS, SP 800-82 Rev.3 [1], solely to 
network security with network segmentation as the primary recommended solution. 
However, network or communication is only one facet of CPS. While network is an 
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important CPS and critical infrastructure component, over-emphasis on networking 
security will not be sufficient for defending the underlying CPS and its infrastructure 
against motivated and well-resourced adversaries. A recent article indicates that the 
assumption of malicious events entering the system solely via the external network 
(hence the need for network segmentation) has been invalidated [2]. The exploits 
discussed in the article did enter the system through the local (internal) network 
and propagated within the internal bus, avoiding the security protection provided by 
network segmentation. A holistic view and approach for defending CPS is needed. 

2 Physical Domain and Cyber Domain 

In CPS, the ultimate goal is for the overall system to be stable and function as 
intended. A resilient CPS is expected to physically operate properly and in a 
predictable and controllable manner under ever-present external and environmental 
disturbance as well as adversarial cyber exploits. The objectives and emphasis 
for CPS resilience are physical stability and functionality. Cyber components and 
systems in CPS are means toward the end of achieving CPS resilience. The stability 
of cyber systems by itself is not the primary objective. 

A cyber physical system contains cyber components that interact with and control 
the behavior of the physical system operating in a physical environment. Generally 
speaking, the cyber controller periodically samples the operation (or mission) 
objective (e.g., the expected set value of speed), measures the actual values of 
physical variables via sensors (e.g., speed, altitude), contrasts measurements against 
the objective, and calculates the magnitude of control variables, which translates to 
direction and/or force to be asserted by the actuator onto the physical environment. 
Figure 1 shows an example of how the physical and cyber components interact in a 
particular cyber physical system—a robotic aerial vehicle (RAV) or drone. 

It is worthwhile to point out the differences of physical and cyber components 
and (sub)systems, and the potential opportunities they may offer for building 
resilient cyber physical systems. The physical platform and the subsystems operate 
in a physical environment at physical speed (and time), governed by the laws of 
physics. The mass and dynamics of a physical implementation define its moment of 
inertia, which in turn influences the response time of the physical subsystems and 
the platform. Any physical subsystem of a CPS must obey the laws of physics, and 
the physical systems invariably have inertia. In essence, physics rules. 

CPS physical and cyber components differ significantly in the scale of their 
response time. Physical and mechanical components have relatively large time 
scales (low frequency), in the order of milliseconds and seconds. A heavier 
object has larger inertia and hence lower frequency (see section “Byzantine Fault 
Tolerance++ (BFT++)” for detailed description of inertia). For example, a large 
tanker vessel takes minutes to change its direction. 

The cyber components operate at cyber speed, typically multiple orders of 
magnitude faster than that of physical components. The scan period of a CPS
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Fig. 1 Cyber Domain and Physical Domain in CPS, derived from MayDay [3] 

controller (1–500 Hz) is usually about one or two orders of magnitude smaller 
(faster) than that of the physical/mechanical machinery [4]. The clock speed 
of the controller CPU (GHz) is generally five to seven orders of magnitude 
faster than the scan cycle. The physical micro-mechanical sensing mass within a 
micro-electro-mechanical systems (MEMS) inertia measurement unit (IMU) has 
resonance frequency measured in KHz, in the 10–30 KHz range [5], still one or 
two orders of magnitude faster than the controller’s scan cycle of a drone. 

Traditionally CPS researchers have been focusing on achieving cyber stability, 
which generally provides physical stability within the designed region of operation. 
This is definitely a prudent design methodology (see the first quadrant in Fig. 2a 
with P(S) and C(S) denoting physical and cyber stability, respectively). 

However, a cyber physical system may have to operate in a physical environment 
with disturbance so large (e.g., strong wind gust or other physical impact) that 
makes the controller algorithms or other cyber components struggle to work while 
out of the designed region of operation. Extended Kalman Filter (EKF) and 
robust control algorithms usually work effectively to absorb and tolerate relatively 
small disturbance, but the physical subsystems and overall platform may fail to 
maintain physical stability under large disturbance. This is quite interesting: cyber 
components work as designed but the physical systems are unstable, see the second 
quadrant in Fig. 2a with P(U) and C(S) denoting physical instability and cyber 
stability, respectively, which indicates that the traditional focus for cyber stability 
is not always sufficient or effective. The community starts to notice this important 
realization, and leaders start to investigate alternatives to designing resilient cyber 
physical systems, such as the DARPA LINC program [6] and the DARPA FIRE 
program [7]. 

Particularly, since we argue that the goal of CPS resilience is physical stability 
and not necessarily cyber stability, cyber components controlling physical com-
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Fig. 2 Desired CPS operation space: (a) Cyber-centric, (b) Physical-centric 

ponents only need to be stable at the scale of the frequency and response time 
of the physical components. Focusing on physical stability, therefore, opens up 
another design space for CPS resilience as the fourth quadrant in Fig. 2b, with 
P(S) and C(U) denoting physical stability and cyber instability, respectively. It is 
important to emphasize again that C(U) means being unstable but also unnoticeable 
by physical components, not being unstable all the time for obvious reasons. 
Empowered by physical inertia and the differences in response time for physical and 
cyber components, the fourth quadrant represents a previously less-explored design 
space for achieving CPS security and resilience. Section 2.2.6 explores cyber-attack 
resilient CPS design within the fourth quadrant. 

2.1 System Model and Control in CPS 

Modeling is essential to every scientific and engineering enterprise. For both 
scientists and engineers, the “thing being modeled” (referred to as target) is typically 
an object, process, or system in the physical world. But it could also be another 
model as manifested in model refinement for formal verification. A “model” of a 
target is any description of the target that is not Kant’s thing-in-itself. For example, 
mechanical engineers use Newton’s laws as models for how a system will react to 
forces. Computer engineers model digital circuits as instruction set architectures 
(ISAs), programs as executions in an ISA, and applications as networks of program 
fragments [8]. Each of these models rests on a modeling paradigm. For example, a 
source code is a model of what a machine should do when it executes the program, 
but the source code is not what is actually run on a machine. The Java programming 
language, for example, is just such a modeling paradigm. Models abstract away 
details, and layers of models may be built on top of another. A CPS system consists 
of such layered models from hardware all the way up to applications it runs. 

The fidelity of a model is the degree to which it emulates the target. When the 
target is a physical object, process, or system, model fidelity is never perfect. But 
as stated in reference [9], “essentially, all models are wrong, but some are useful”. 
As highlighted in reference [8], in science the value of a model lies in how well 
its properties match those of the target, whereas in engineering the value of the 
target lies in how well its properties match those of the model. A scientist constructs
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models to help understand the target. An engineer constructs targets to emulate the 
properties of a model, since for an engineer a model represents a design and the 
target is the implementation. These two uses of models are complementary. 

For CPS modeling and control, therefore, it is critical to always keep a clear mind 
in terms of the thing, the  model, the  purpose of the model, and the interactions 
between the thing and the model in either a science or engineering context. For 
example, simplicity and clarity of target semantics may dominate over accuracy and 
detail, and optimizing over a model does not necessarily bring about desired effects 
or benefits to the target. 

Moreover, it is important to note that models (and analyses and controls over 
these models) have their inherent region of operation, a concept commonly known in 
each individual disciplines but unfortunately often ignored in real-world practices. 
This is particularly true in CPS where multi-layer models exist, and their interac-
tions lack sufficient attention. The re-invigoration of AI/ML makes this awareness 
even more relevant, in terms of where and when AI/ML could help analyze and even 
take over some control of the cyber physical system without adversely affecting 
the physical or cyber operation stability. Special care must be taken to understand 
the boundary of each model, interactions among models, appropriate positioning 
of AI/ML models and algorithms, and anticipated and measurable effects in the 
physical world. 

2.2 CPS-Specific Cyber Security Challenges and Solutions 

Traditional cyber defense for CPS has mainly focused on the level of human-
machine interface (HMI) and security information and event management system 
(SIEM). This is largely due to the similarity to established cyber protections for 
hosts and networks, and the information technology (IT) mindset possessed by 
practitioners. However, this leaves the lower-levels of the cyber physical system 
vulnerable to attacks not common in a traditional IT environment. 

Protection of low-level components and subsystems includes protecting the 
interconnect and computation or logic of the controllers. In general, cryptographic 
protections provide a way to disrupt potentially rogue modules from snooping at 
the bus. Although this is effective for protection, it might be considered unsuitable 
since the bus data is mainly useful only in real time when interpreted in context of 
the control model and physical situation. The overhead is simply too high for each 
involving module on the bus to conduct encryption and decryption constantly. In 
addition, compromises at the controller level, e.g., rogue control signals issued by 
the compromised controller, render encryption irrelevant (encrypting the rogue data 
does not help security or resilience), or even harmful since the attack traffic/attacker 
communication is protected by encryption. 

Protecting the controllers themselves includes (and is not limited to) fault 
avoidance, fault tolerance, and model- or reference-based CPS security. Formal 
methods which attempt to reason over certain properties of an implementation
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model against a specification model is the dominant technique for fault avoidance. 
Considering the typical tractability and practicality of creating both models, using 
formal methods is an excellent approach for achieving CPS security and resilience 
via fault avoidance. But this would imply the complete redevelopment of the 
system (or at least the subsystem subject to formal methods) from scratch. This 
is very expensive for legacy systems which are prevalent in industry and military 
applications. 

Fault tolerance is a complementary approach to fault avoidance. This method 
assumes that vulnerabilities exist in the controller code and strives to mitigate 
the effect of exploits by ensuring proper operations of the physical system part 
of CPS, even under successful cyber attacks, thus rendering CPS resilience. 
Fault tolerance methods often involve detection and recovery, including stateful 
component, subsystem or system level recovery. 

Reference/model-based CPS security relies on the fact that a CPS, unlike general 
IT systems, is generally well constrained within its operation space and intended 
behaviors. The operations are periodic and predictable, and reference models for 
algorithms and the operating environment can be developed and used to detect 
discrepancy between the observed operation and models. Discrepancy beyond some 
tolerance threshold may indicate flaw, damage, disruption, or exploits. 

2.2.1 Cyber Attacks Against CPS and Critical Infrastructure 

Our goal for CPS resilience is to have the physical systems behave properly 
regardless of fault or disruption (cyber or otherwise). In keeping with reality, we 
make no assumption that a system is devoid of bugs or vulnerabilities. Rather, we 
seek to enable a CPS to tolerate and live with existing bugs and vulnerabilities it 
may have. 

We assume an Advanced Persistent Threat (APT)-like adversary, whose goal is 
to create maximum disruption, major damage, and difficult and lengthy recovery 
time. To defeat system protection & fault tolerance and to achieve maximum 
disruption and major damage, an adversary generally needs to subvert and affect 
many individual controllers (various systems components) simultaneously and in 
coordination. Uncoordinated one or two subversion and denial of service attacks are 
unlikely to cause major disruption or damage. 

There are generally two methods to subvert or negatively-effect the behavior of a 
controller: (a) manipulate or inject malicious input to cause improper control output, 
or (b) hijack and own the controller via either rogue reprogramming command (from 
console) or malicious input that corrupt program execution, hijack the program 
control and own the controller. Note that cyber attacks that leak (confidential) 
information can be used to gather intelligence and help plan for an attack, but by 
itself cannot subvert the operational behavior of a cyber physical system. 

To significantly influence a set of controllers of diverse functionalities and types, 
an adversary will need to inject many different inputs/signals in a coordinated 
manner, which is difficult to achieve in practice and often requires the adversary



Lessons Learned and Future Directions for Security, Resilience and Artificial. . . 409

to own many controllers to perform coordinated, multiple signal injections. The 
most dangerous exploit is when devices/controllers were stealthily taken over one 
by one, and then upon triggering event(s), simultaneously act (in coordination) and 
disrupt the systems. Stealthily owning controllers are the prerequisite for APT-
like coordinated attacks. An adversary can stealthily own a controller in several 
ways. One of them involves reprogramming (re-flashing) the controller itself, e.g., 
in the case of Stuxnet. To do this, the adversary will generally have to own either 
the maintenance laptop or the human machine interface (HMI) console, and issue 
malicious updates from the corrupted laptop or console. This risk can be reduced 
by requiring multi-factor authentication for firmware update/re-flashing. Another 
method for owning a controller would be to exploit a (software) vulnerability, and 
send/inject malicious inputs that will corrupt and take over the controller. 

Byzantine fault tolerant++ (BFT++) is a family of cyber resilience methods that 
rely on the periodicity of CPS and the physical inertia to tolerate cyber attacks. 
The BFT++ family of CPS resilience prevents this particular class of methods for 
hijacking and owning the controller. Additionally, BFT++ is generic and agnostic 
to the particulars of malware or malicious inputs. Refer to section “Byzantine Fault 
Tolerance++ (BFT++)” for the detailed description of BFT++. 

2.2.2 Anatomy of CPS/Controller Owning Cyber Exploits 

Fault tolerance systems, such as byzantine fault tolerant (BFT) and quad redundant 
control (QRC), have been proven effective for safety critical systems. They rely on 
redundancy to detect and recover from faults, and essentially provide fault tolerance 
against natural disruption and random faults. 

Cyber attacks present a new type of challenges. They can force faults in 
many components and subsystems simultaneously, which leads to a “common-
mode failure” that traditional fault tolerance cannot effectively deal with. Worse, 
if the adversary is successful in compromising a component, there is no obvious 
fault signal to detect, and the controllers continue to actuate the system while 
compromised and under the control of an adversary. Attempts to deal with common-
mode failures have been made through diversification, but the type of diversification 
must be appropriate to the class of causes of common-mode failures that the CPS 
owner wants to mitigate, and special care must be taken with respect to what, 
when and how much diversification is deployed depending on CPS and mission 
requirements. 

The process of a cyber exploit involves two virtual stages: first, exploiting a 
flaw/vulnerability in the program’s code to alter its intended execution path, and 
second, taking control of the system to execute the attacker’s commands. This is 
analogous to a fumble in football, where an opposing team must not just cause 
a fault, but recover the ball to gain possession, as shown in Fig. 3. A successful 
exploit will succeed in both stages, leading to compromised systems under attacker 
control. A condition when the first stage is successful but the second stage fails will
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Fig. 3 Two virtual stages of cyber exploit 

generally manifest into a crash, due to corrupted (as opposed to compromised) cyber 
components and subsystems. 

2.2.3 Defense: White Listing and Operation Segmentation 

Many CPS operational environments can be analyzed and segmented into several 
different modes of operation. Within each of these modes, the set of valid (allowed) 
operations can be whitelisted. Operation segmentation is analogous but orthogonal 
to network segmentation. While network segmentation limits exploits effects 
and propagation by limiting allowable communications, operation segmentation 
prevents CPS disruption by limiting incompatible and hazardous co-occurrence of 
operational commands/events. 

For example, let us consider the cyber physical systems that control the operation 
of a ship, and for the purpose of illustration assume that the engineers decided to 
segment the ship operation into three modes: steaming mode, in-port mode, and 
maintenance mode. Maintenance mode is akin to the superuser mode in modern 
operating systems where (almost) all operations are allowed. For simplicity, let 
us consider three different operations: dropping anchors, brisk-steaming (above 5 
knots), and re-flashing the controller. One can see that dropping-anchors and brisk-
steaming are mutually exclusive. It will not be prudent to drop an anchor while 
briskly steaming, hence dropping anchors is not within the steaming mode whitelist, 
and brisk-steaming will not be in the in-port mode whitelist. Similarly, re-flashing a 
controller should only be performed in the maintenance mode. 

Operation segmentation improves the operational safety of a cyber physical sys-
tem. Separating the maintenance mode from other operation modes also enhances 
the system’s cyber security posture by whitelisting out disallowed behaviors and 
requiring additional privilege for critical activities, such as re-flashing a controller. 
While it cannot completely prevent cyber attacks, operation segmentation erects
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barriers against various malicious activities that may otherwise readily perform once 
a foothold is obtained in a component or subsystem. 

Operation segmentation focuses all the working aspects of the cyber physical 
systems onto the operators, which are responsible for the CPS operations, including 
approving and initiating CPS maintenance. This is a judicious method compatible 
with the principles of separation of duties and least privilege for building computer 
systems [10]. Current trends in modern cars, which are systems of cyber physical 
systems, however, are diverging from this philosophy. In the case of modern cars, 
it is the manufacturers who often initiate the system update, with or without the 
awareness of the operator (owner). There are both pro and con arguments that can 
be made for this context. 

2.2.4 Defense: Reference Model Based CPS Security 

Since cyber physical systems extensively communicate with their physical environ-
ment, system security relies not only on cyber security but also on securing the 
physical part of the system. This means the cyber layer, as well as the platform 
(including the physical) layer and their inter-dependency, must be considered 
together. For example, the platform layer covers the whole run-time environment 
containing artifacts like operating system and middleware, as well as the physical 
part of the system such as sensors and actuators, etc. Hence, as an entity that 
senses and interacts with the real world, a CPS could be exploited by an adversary 
and cause harmful impacts. Depending on the level of the attacker’s access and 
capabilities, either or both sensing components and control software can be subjects 
of a compromise. 

One of the most common security approaches for detection of attacks against 
control software is a comparison of true and faulty signals, thus necessitating trusted 
redundancies. For example, if an extra electronic control unit (ECU) hardware is 
retrofitted to the robotic vehicle with no access channel from the outside, it is 
shielded from the attacker, and hence can be trusted. Such CPS can still operate as 
intended with its original control software, while the control signal can also be used 
to enable comparison against the retrofitted ECU for attack detection and response. 
Instead of changing the original control system, an external piece of hardware can be 
used to monitor the given ECU with minimum modification to the original system. 
Independently implementing the CPS control and sensing logic software on the 
external hardware enables high-accuracy error detection. 

Such combination of the software and hardware redundancy has been proven to 
successfully detect a variety of attacks on the sensor, controller, vehicle dynamics, 
actuator, and controller operating systems [4]. The attack detection must combine 
control algorithms such as state-estimation, fault detection and diagnosis, fault tol-
erant control parameter and controller estimations to detect CPS dynamic changes. 
Specifically, it detects changes in the original system by comparing instantaneous 
outputs in real-time, while it is shielded from attackers. The entire diagnosis process 
can cover both the cyber and physical domains. A smooth variable structure filter
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Fig. 4 System diagram of the FDI approach using hardware redundancy (reprinted from [4]) 

(SVSF) was used to estimate system states and identify system parameters, which 
is proven to be robust to model uncertainty and noise. The system diagram of such 
an approach is shown in Fig. 4. 

Raw sensor data are extracted and used to compare with the feedback from 
the original system to determine if the sensor fusion result or code in the original 
system has been modified. The decision engine will integrate the error between 
the two measurements within a fixed time window and identify sensor attacks using 
thresholds. The sensor fusion results are also fed to its internal controller and SVSF-
based estimator for further security diagnosis and attacks detection. 

The sensory system is also critical for CPS safety. Recent advances in adversarial 
studies demonstrated successful sensing fault generation by targeting the physical 
vulnerabilities of the sensors. A complete CPS sensor safety design must contain 
both an fault detection and isolation (FDI) unit and a fault recovery (FR) function 
to tolerate the detected flaws. When faults are identified and isolated by the FDI, 
the recovery logic should then be able to maintain the correct state with as much 
stability as possible using the remaining incomplete sensory systems. 

As CPS sensors, the actuation system is also vulnerable and can be easily 
compromised via similar cyber and physical domain strategies. Actuator failures 
not only affect the normal operations, due to the implicit dynamics from the 
actual system, they also introduce the need of FDI design to distinguish the exact 
sensing and actuation faults. A flawed sensor may induce multiple state anomalies 
simultaneously and CPS may yield a similar abnormal action to two completely 
different types of failures (e.g., sensor or actuator failure which complicates 
pinpointing the failure source). Hence, to achieve proper FDI capability, the inherent 
coupling of the CPS dynamics must be considered. Further, when multiple CPS 
states malfunction simultaneously, it is hard to identify the exact failure sensor. 
The cascading effect may also have to be considered. For example, the high-level
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sensor abnormalities can affect low-level sensing in cascade for UAVs (e.g., attitude 
twitching can be subject to the frequent loss of position feedback). 

One major circumstance to help sensor recovery is the fact that in most cases, 
excluding the most catastrophic, all the onboard sensors cannot be rendered 
defective at the same time. It is hard to compromise multiple sensors simultaneously 
because they typically measure different physical terms and possess distinct working 
principles, communication methods, and signal bandwidth. 

To recover the sensor readings, installation of a backup sensory system is 
the most widely used approach. Through a simple comparison and replacement, 
this hardware redundancy is effective against the traditional software-based sensor 
faults and attacks, such as numeric error, trojans and data spoofing. However, this 
approach is not sufficient when the CPS encounters some well-designed attacks that 
concern both cyber and physical properties of the targeted sensors. This is because 
the redundant sensors exhibit the same physical vulnerabilities as the original ones. 
For example, a redundant attitude sensor would be incapable of nullifying the effects 
of resonating the inertial sensors via external excitation. It is highly likely both the 
original and redundant sensors would fail. 

As an alternative to a redundant hardware approach, the redundancy-free meth-
ods for CPS sensor FDI and fault recovery (FR) as reported in [11] make the 
most sense. Figure 5 shows the system diagram, which consists of a fine-grained 
sensor FDI architecture and a sensor complementary FR in parallel. For fine-grained 
FDI, a basic state estimator for a rough early warning of faults combined with 
the un-measurable actuator state and modeling uncertainties are utilized. Instead of 
adding auxiliary sensors, the method uses the original sensor arrays and leverages 
complementary sensor estimations for FR implementation. 

Fig. 5 FDI/FR without hardware redundancy (reprinted from [11])
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The FDI design is based on smooth variable structure filter (SVSF), which 
is a sliding-mode-based state estimator with a prediction-correction workflow. In 
one iteration, a model-based prediction function generates a priori state estimation 
first, then a discrete corrective action is taken by adding a corrective gain. The 
corrective gain is not only used to guarantee the stability of the estimator but 
also rectify the bounded estimation error robustly. Subsequently, the updated 
posteriori estimation and state measurement carry out the next iteration. The fault 
is detected by examining sensor FDI procedure-residual check (i.e., the discrepancy 
between estimation and actual sensor reading). If the residual rises beyond a certain 
threshold, a fault is supposed to be present and will be reported to begin the recovery. 

The sensor fault recovery without hardware redundancy is CPS domain specific. 
For example, for UAVs, due to the geometric correlation of the vehicle dynamics, 
position and attitude feedback can be used to compensate each other. During the 
recovery process, with the fine-grained FDI, the compromised sensor reading is 
rejected and compensation from other trusted sensors will be utilized. For example, 
in case of an inertia sensor failure, position information can be used to derive an 
alternative attitude for flight control. When the UAV loses its position feedback, the 
inertia measurement can be utilized to compensate position drift. 

In summary, reference models provide feasible and robust means for state 
estimation, behavior prediction, discrepancy checking, decoupling of sensor and 
actuator faults, and diagnosing multiple faults and accurately isolating the source 
of faulty elements, thus offering a well-grounded base for building security and 
resilience in cyber physical systems. 

2.2.5 Defense: Vulnerability Prevention 

To prevent against the first stage of a cyber exploit (see Sect. 2.2.2), CPS software 
needs to be devoid of any exploitable vulnerability. Fault or vulnerability avoidance 
generally falls within the first quadrant (P(S), C(S)) of Fig. 2. CPS software can 
be analyzed against exploitable vulnerability, and the location where a vulnera-
bility is identified will be hardened with security checks or assertions. Software 
vulnerability analysis generally uses both static (e.g., symbolic execution) and 
dynamic analysis (e.g., fuzzing) tools for finding exploitable vulnerabilities. Formal 
verification is another approach for assuring that the software is devoid of flaws or 
vulnerabilities. We will describe hardening and formal methods in what follows. 

Security Hardening 

Vulnerability analysis and hardening is usually performed in several steps: (i) static 
software program analysis, (ii) instrumentation, (iii) symbolic execution, and (iv) 
fuzzing with dynamic tracing/feedback-guided fuzzing with sanitizing. 

Software program analysis includes combination of static analysis (e.g., depen-
dency analysis, program slicing, etc.) and a symbolic exploration of the program’s
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state space (e.g., “can we execute it until we find an overflow?” or “let’s execute 
only program slices that lead to a memory write to find an overflow.”). Symbolic 
execution also takes advantage of instrumentation for precise results. 

Fuzzing is a form of software testing where an application is run with random 
(potentially malformed) inputs while monitoring the runtime for unexpected behav-
iors, e.g., crashes, memory exhaustion, or infinite loops. There are generally two 
types of fuzzing: (i) Blackbox fuzzing (i.e., fuzzing with no knowledge about the 
target application) may not be effective in many cases as most inputs are likely to 
explore very shallow code paths. This severely limits the fuzzing ability to uncover 
bugs in deep parts of the code. (ii) Coverage-guided fuzzing tackles this problem 
by using program traces generated by the inputs as a feedback mechanism to tailor 
future inputs to the fuzzing target. 

In essence, fuzzing depends on program crashes to detect and report bugs. 
Consequently, bugs that do not trigger crashes are not caught through fuzzing. 
Therefore, for effective fuzzing, software must be instrumented with sanitizers (e.g., 
a memory checking code such as memory leaks and initialization, heap and stack 
overflows, illegal accesses, etc.) either at compile time or at the binary level. 

Program analysis and instrumentation can be performed for newly developed 
software during CPS software code compilation, or, on the available binary code for 
legacy software. For the former case (i.e., compiler-time analysis and hardening), 
the mainstream software build tools (e.g., GCC and LLVM) provide extensive 
interface and framework for analysis and code optimization in its Intermediate 
Representation (IR) form during code compilation. For the latter case (i.e., binary 
analysis and rewriting), analysis in the form of symbolic execution with various 
static analyses on binaries is performed as three distinct steps: (i) loading a binary 
into the analysis program, (ii) translating a binary into an IR, and (iii) performing 
the actual analysis. 

The rewriting part for instrumentation and hardening presents a few difficult 
challenges. Specifically, dis-ambiguating reference and scalar constants, so that 
a program can be “re-flowed” (i.e., having its code and data pointers adjusted 
according to the inserted instrumentation and data section changes) is a major 
challenge. During assembly, labels are translated into relative offsets or relocation 
entries. A static binary rewriter must recover all these offsets correctly. There 
are three fundamental techniques to rewrite binaries: (i) lifting the code to an 
intermediate representation, (ii) trampolines, which rely on indirection to insert new 
code segments without changing the size of basic blocks, and (iii) reassemblable 
assembly, which creates an assembly file equivalent to what a compiler would emit 
(i.e., with relocation symbols for the linker to resolve). 

Lifting code to IR for recompilation requires correctly recovering type informa-
tion from binaries, which remains an open problem. Trampolines may significantly 
increase code size and do not scale very well. Consequently, we believe that 
reassemblable assembly is the most promising approach, which creates assembly 
files that appear to be compiler-generated (i.e., do not contain hard-coded values 
but assembly labels). Symbolizing the assembly allows security-oriented rewriters 
to directly modify binaries, which is similar to editing compiler-generated assembly
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Fig. 6 Variant generation workflow (reprint from [12]) 

files. Once modified, the symbolized assembly files can be assembled using any 
off-the-shelf assembler to generate an instrumented binary. 

There are a number of security mechanisms and sanitizers to harden programs 
written in unsafe languages, each of which mitigating a specific type of memory 
error. It includes various memory checking techniques, undefined behavior mon-
itors, control flow integrity trackers, temporal safety enforcers, etc. The major 
problem is that the execution slowdown caused by various security mechanisms 
is often non-linearly accumulated, making the combined protection prohibitively 
expensive. 

One of the most viable approaches to mitigate this problem is to use security 
diversification consisting of N variants that are both functionally identical in normal 
situations and behaviorally different when under attacks. Hence, although each 
program version may be vulnerable to certain types of attacks, the security of the 
whole system relies on the notion that an attacker has to simultaneously succeed 
in attacking all variants in order to compromise the whole system. In addition, 
different and even conflicting security mechanisms can be combined to secure 
a program while reducing the execution slowdown by automatically distributing 
runtime security checks in multiple program variants [12]. This can be achieved by 
making sure that conflicts between security checks are inherently eliminated and 
execution slowdown is minimized with parallel execution. The N-version execution 
engine synchronizes these variants so that all distributed security checks work 
together to guarantee the security of a target program. The notional workflow 
diagram is shown in Fig. 6. 

Formal Methods 

While program analysis tools are indispensable to find vulnerabilities, they essen-
tially explore part of the state and execution space, and hence can never provide 
complete guarantees. Formal methods provide complementary means for vulner-
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ability prevention. Generally speaking, formal methods are system design and 
analysis techniques that use rigorously specified mathematical models to build 
software and hardware systems. In other words, formal methods use mathematical 
proofs as a complement to system testing (e.g., fuzzing) in order to ensure correct 
behaviors. 

Using the terms mentioned in Sect. 2.1, consider a binary executable as the 
thing. In general, the Concrete Model or .Mc is comprised of (but not limited to) 
an instrumented C or C-like program (source). The concrete model represents the 
actual executable but is more generic, meaning some properties are present in the 
model that are not reflected in the binary. An Abstract Model or .MA (for reasoning) 
is comprised of formal constructs such as Hoare’s logic (or its variants such as 
separation logic, higher order logic, etc.). It can be derived from the binary or . Mc

and captures all properties in binary or .Mc but is more generic and might include 
properties not in binary or . Mc. In an ideal world, no error in lifting or abstraction is 
made and the three concepts (executable, . Mc, and .MA) are all identical. In reality, 
however, this is not the case and much research has been conducted to shorten the 
gaps between them. One notable methodology is counter-example guided abstract 
refinement (CEGAR) where .MA is iteratively checked against a given property and 
refined if the check fails [13]. Most of the formal verification efforts adopt a similar 
model refinement approach. 

Over the last decade, the understanding of formal methods and development 
of tools have improved to the point where formal verification of real-world 
software has started to become feasible. Examples include functional correctness 
proofs of microkernels and cryptography libraries. Formal methods have also been 
used to identify deep vulnerabilities in software, revitalizing the field of program 
analysis. With respect to vulnerability prevention, seL4 is the first formally verified 
microkernel with a functional correctness proof of the abstracted source code against 
the specification, effectively asserting the absence of typical programming errors 
such as null pointer dereferences, buffer overflows, and arithmetic exceptions [14]. 
The development of seL4 was supported by the DARPA High-Assurance Cyber 
Military Systems (HACMS) program, which aimed to create technology for the 
construction of high-assurance cyber-physical systems, where high assurance is 
defined to mean functionally correct and satisfying appropriate safety and security 
properties. Since it’s original proof over a decade ago, seL4 has seen reasonable 
successes in both continual development and early adoption. For example, due to 
the offered higher-level of confidence for assurance, seL4 was selected by the AFRL 
Agile and Resilient Embedded Systems (ARES) program to serve as the separation 
kernel providing memory allocation and isolation based on the hardware memory 
management support. 

However, while formal methods provide a rigorous way for vulnerability pre-
vention, it is important to point out that the proofs are usually carried out between 
models (e.g., abstract and concrete models), as opposed to against the thing or binary 
executable in this case. For example, just because seL4 is formally verified does not 
necessarily mean the binary executable runs exactly as expected in the specification 
on the target computer architecture. Additional binary level assertion is still needed
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if the purpose is to provide execution assurance directly on the computer hardware. 
Again, this is a reminding and cautionary tale related to the thing and its models, as  
discussed in Sect. 2.1. 

2.2.6 Defense: Vulnerability Tolerance 

Most safety-critical systems utilize some type of redundant architecture to deal with 
faults. Examples include hot backups; dual, triple, or quad-redundant architecture; 
or Byzantine fault tolerance where assumptions about the fault conditions are 
random, and faulty replicas may behave arbitrarily. Fault tolerance provides a means 
to automatically deal with faults and recover from them. Cyber attacks, however, 
will drive fault tolerant system into common mode failures (see Sect. 2.2.2). The 
challenge is how to retrofit existing fault tolerance architecture to rectify faults 
caused by cyber attacks. 

A typical cyber physical system offers certain properties and advantages one 
would not find in a general IT system. This is because the physical aspect allows 
for a certain degree of predictability in the behaviors of the system.

• Periodicity: The cyber subsystem that directly interacts with the physical plant 
runs in continuous cycles. For example, throughout its execution the controller 
reads values from sensors, calculates the error correction signal, and writes out 
actuator values. For the commonly used industrial controllers, Programmable 
Logic Controllers (PLCs), this is called the scan cycle.

• Inertia: Any physical subsystem of a CPS must obey the laws of physics 
and physical systems inherently have inertia. The scan cycle of a controller is 
typically engineered to be fast enough such that an issue in a small number of 
cycles will be dampened out by the existing inertia. The cycle frequency is set 
depending on the system but common values vary anywhere between 1 Hz and 
1 kHz.  

Due to this predictability offered by inertia and periodicity, anomaly detection 
approaches can be naturally used to detect anomalies and threats in the system. A 
resilience strategy can also be developed to detect attacks by monitoring actions 
such as subverting control flow, reprogramming controllers, or overriding sensors 
that are out of the normal operation ranges. 

Cyber vulnerability (and attack) tolerance does not rely on the need for software 
to be devoid of vulnerabilities. Instead, it assumes that unknown vulnerability exists 
within the software and strives to maintain the safety and normalcy of system 
operation regardless. Vulnerability tolerance methods focus on the second stage of 
cyber exploits (see Sect. 2.2.2) and will generally have to perform timely recovery 
within the limited time afforded by the physical systems’ inertia, as the first stage 
of cyber exploits may have already occurred and the cyber systems may have 
been corrupted. In what follows we will describe some example techniques, tools 
and frameworks for providing vulnerability and attack tolerance, empowered by 
inertia and predictability unique in cyber physical systems. These include Software
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Brittleness, Byzantine Fault Tolerance++ (BFT++), You Only Live Once (YOLO), 
and CPS Cyber Resilience Architecture (CRA). 

Software Brittleness 

For some certain types of critical cyber physical systems, avoiding operating in 
degraded or compromised state is of paramount importance, and fast program 
exit and re-start (called software brittleness) is required when a cyber attack 
succeeds and the program control is lost. Examples include Industrial Automation 
and Control Systems(IACS), Supervisory Control and Data Acquisition (SCADA) 
control systems and devices, Programmable automation controllers (PAC), remote 
terminal units (RTU), Master terminal units (MTU), intelligent electronic devices 
(IED), etc. Software brittleness is a novel concept enabled by the new design space, 
i.e., the fourth quadrant with P(S) and C(U) as shown in Fig. 2b. Essentially, the 
inherent physical inertia allows enough room for cyber components to reconstitute 
themselves via fast crash-and-recovery. 

Code randomization/diversification for software brittleness can be implemented 
at either pre-distribution or post-distribution stages. Both types of diversification (i) 
provide the level of code diversification sufficient to guarantee that an attack that 
succeeds in the original program will fail in the variants, and (ii) assure prompt 
attack discovery through self-monitoring capabilities of the diversified code. Using 
N-voting system with simultaneously running multiple generated variants will 
assure prompt discovery and recovery. There is an integrated set of diversification 
techniques available at both the source and binary code levels against most known 
attacks (e.g., memory corruption, code injection and re-use, control flow hijacking, 
information leaks, etc.). The conceptual approach toward software brittleness, called 
Binary code Randomization for Attack Sensitive Software (BRASS), is shown in 
Fig. 7. It has been demonstrated that this approach provides prompt attack discovery 
and program abort & recovery with low performance and size overhead [15]. In the 
CPS context, software brittleness can be included in controllers, for example, and 
managed through some vulnerability/fault tolerance framework, which comes next. 

Byzantine Fault Tolerance++ (BFT++) 

BFT++ is a family of cyber attack resilience methods that rely on the periodicity 
of CPS and the physical inertia to tolerate cyber attacks [16]. The initial concept of 
BFT++ was developed by the Office of Naval Research (ONR). It operates in the 
fourth quadrant (P(S), C(U)) in Fig. 2b. MITRE Corp. maintains a reference design 
for BFT++ for the NAVY and DoD in general. BFT++ has been demonstrated to 
withstand US-NAVY sponsored “Hack The Machine” hackathon. 

Figure 8 illustrates the main components of the BFT++ design. It is built over 
the classical BFT systems. Artificial diversity in the form of diversified software 
compilation or diversified processors (ISAs) is used to break common-mode failure
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Fig. 7 The conceptual approach toward software brittleness 

Fig. 8 General design of BFT++ Cyber attack resilience methods for CPS 

(C0 & C1), and delayed input sharing (delay queue) is inserted into the input of the 
backup unit/controller for stateful (warm) recovery. For a CPS system that does not 
demand stateful recovery, the delay queue and backup unit (C2) can be omitted. 

BFT++ uses artificial software diversification applied to existing code. As an 
alternative, two (or more) distinct processors of different instruction set archi-
tectures can also be used to provide diversity. When used in combination with 
traditional fault tolerance architecture, this is also effective at absorbing (and 
tolerating) cyber faults. Note that attackers only have one opportunity per scan 
cycle to provide corrupting inputs. Diverse replicas will have different code layouts, 
making it almost impossible for attackers to inject malicious code that works across 
all replicas simultaneously. Due to the real-time nature of the periodic control loops, 
synchronization across replicas is built-in, and an attack can be detected if the 
program results vary across replicas or if timely responses are not provided.
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The next crucial step is enabling the system to recover. Diversity within the 
system can make it more fragile, so fast-acting and automated recovery must be 
employed to counterbalance this. Without recovery, the attacker could maintain 
control of one (compromised) replica and leave the others crashed—a clearly 
unacceptable state. 

Crash detection is the first part of the recovery process. Ideally, we want to detect 
a potential compromise via a crash of one of the diversified replicas as soon as 
possible. In our case, a replica failing to produce timely output by the end of the 
epoch is considered to have crashed. This serves as a canary that there has been a 
compromise. 

Next, a small message queue is employed in front of one of the replicas 
(henceforth referred to as the “protected replica”). This is key, because when a 
potential compromise is detected (via the crash detection), the message(s) triggering 
said crash are trapped in the queue before reaching the protected replica. Upon crash 
detection, this queue can be flushed removing the offending messages. While this 
introduces a small delay to the protected controller, the physical inertia of the system 
allows BFT++ to absorb this without impact to the real-time operation. 

Finally, recovery begins, and the state of the replicas are restored. Restoring from 
a checkpoint is possible but requires much resources to handle the overhead of 
saving checkpoints as well as a way to deal with the staleness of state upon a restore. 
Instead, the strategy advocates designating one or more replicas as backups and 
time-delaying them, so they process inputs one or more cycles behind the primaries. 

This method for cyber resilience has allowed older control systems to identify 
cyber attacks during their normal operation, automatically triggering a quick and 
efficient recovery process. However, there is still a concern that attackers may 
exploit this system behavior to launch an availability attack. While we have 
prevented any exploit from affecting the system’s integrity, it is possible for a 
known vulnerability or bug to trigger the recovery process and cause the system’s 
availability to be compromised. To address this issue, we designed a mitigation 
strategy known as “Shims” that filters out any malicious inputs that cause the 
recovery architecture to send a crash signal. By implementing shims at the input 
point for the controllers, replaying an exploit after it has already been used against 
the system will be prevented. 

For a particular BFT++ implementation [16], the architecture has three redundant 
diversified controllers operating in a traditional fault-tolerant architecture. The 
artificial diversity makes it difficult for a cyber attacker to compromise all controllers 
with the same malicious input. Although an exploit may be successful against one 
replica, it will cause the diversified replicas to crash. Next, it incorporates delayed 
input sharing (e.g., FIFO message queue) to trap bad messages before reaching 
a “protected controller”. This introduces a delay to the protected controller, but 
ensures the system to continue operation and to be reconstituted after the cyber 
exploit. The recovery timing of the system is governed by several timing parameters, 
such as Tcrash, Tsc, D, Td, and Tr. Tsc, Td, and Tr are system parameters, and 
D needs to be appropriately set for automated recovery to be possible. The two 
critical points that determine the system’s recovery timing are the brittleness of
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the controllers and how quickly the system can restore a controller to the normal 
state. The physical subsystems with higher inertia are generally more tolerant of 
losing control signals for a short time. In general, the following relationship between 
these parameters must hold for BFT++ to be applicable to a legacy cyber physical 
system [16]: 

. T crash ≤ D ∗ T sc ≤ T d − T r

Parameters Definitions 

Tcrash Time between attack and crash 

Tsc The scan cycle period 

D FIFO queue length (number of slots) 

Td Maximum control loss tolerable by physical systems 

Tr Recovery latency 

You Only Live Once  (YOLO)  

YOLO is another CPS cyber resilience method that relies on the physical inertia 
to withstand cyber attacks. YOLO and its variants use periodic restart and does 
not require any redundant controller [17]. It also operates in the fourth quadrant 
(P(S), C(U)) in Fig. 2b. YOLO was developed at Columbia University under the 
sponsorship of the Office of Naval Research. 

Figure 9 depicts the design philosophy for YOLO. YOLO implements periodic 
restart to limit the duration of potential compromise. An adversary who managed to 

Fig. 9 General design of YOLO cyber attack resilience methods for CPS [17]
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compromise the system only has control over the system for a maximum duration 
of the restart period. The YOLO restart period can be designed to be short enough 
to prevent an adversary to achieve persistence within the CPS system, while still 
within the tolerable region provided by the physical systems’ inertia. During each 
restart, the controller is reset to its ‘clean’ state by loading its software from a 
read-only module and clearing out all the volatile memory. YOLO also implements 
software diversity after each restart to ensure that the attacker cannot exploit the 
same vulnerabilities. YOLO has been demonstrated to be practical for automotive 
engine management unit, drone controller and a missile launcher. 

In YOLO, the restating latency and state recovery time need to be within the 
range that the inertia of the physical systems can tolerate. Proper engineering 
analysis and design is required to accelerate the restarting process and to avoid 
lengthy reboot and initialization latency of the cyber system. YOLO does not 
require replication, and hence it is cheaper to implement than BFT++. However, 
its protection is not as deterministic as that of BFT++, and current version of YOLO 
does not support stateful (warm) recovery. 

CPS Cyber Resilience Architecture (CRA) 

Existing CPS cyber resilience architectures, including BFT++ and YOLO, have 
been analyzed and summarized into a timing-based formulation framework [18]. 
Within this framework, safety analysis and computation of control policies and 
design parameters can be performed for each pair of CRA method and CPS 
application. 

The framework relies on the insight that the cyber subsystem operates in one 
of a finite number of modes. It defines a hybrid system model that captures a CPS 
adopting any of these architectures (CRAs). Analysis within this framework uses 
the transition model of the hybrid system to derive architecture-agnostic sufficient 
conditions for control policy and timing parameters that ensure safety of the CPS. 
The analysis will then formulate the problem of joint computation of control policies 
and associated timing parameters for the CPS to satisfy a given safety constraint and 
derive sufficient conditions for the solution. Utilizing the derived conditions, they 
provide an algorithm to compute control policies and timing parameters relevant 
to the employed architecture. The framework efficacy has been demonstrated in a 
case study involving automotive adaptive cruise control. The study was performed 
for each of the CRA methods in their framework, and proved that the algorithm 
converges to a feasible solution under certain conditions. 

Figure 10 visualizes the operation of a drone employing YOLO, under continu-
ous cyber attacks. It shows three operation zones: desired operating zone, zone of 
tolerance, and danger zone. The drone is expected to operate in the desired safe 
zone, and danger zone can only be safely entered when the vehicle is in normal 
mode, otherwise catastrophic crash may occur. The vehicle (drone) can be safely 
restarted and recovered within the tolerated zone. Safety cannot be guaranteed if the 
drone enters tolerated zone in a corrupted state.
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Fig. 10 An illustration of CPS safety analysis within the framework [18] 

3 Machine Learning and CPS 

In this chapter, the terms machine learning and neural networks will be used 
interchangeably. At the most general level of interpretation, machine learning is 
a super-set of statistical machine learning (i.e., neural networks). The term machine 
learning in general also includes learning heuristics and other logical and formal 
form of learning mechanisms. Contemporary use of the term machine learning 
generally refers to various forms of neural networks, which are often considered 
as surrogates for formal/logical control algorithms in the CPS context. 

Robotic devices and vehicles can perform some of its functions using machine 
learning and especially reinforcement learning (RL), e.g., RL for drone fault 
recovery [19]. Training neural networks may be performed by guiding the robotic 
devices to function within its physical environment. Training may also be conducted 
in the virtual simulation environment [19], where the sensory and control input as 
well as the actuators and their dynamics are simulated using physics models of 
the actuators, sensors and the physical environment. The use of physics models 
for training a CPS system is generally safe as the laws of physics are universal, 
relatively complete, consistent and context insensitive. 

Machine learning may also be used for correlating various monitored and logged 
events in cyber physical systems. It helps correlate cyber events such as network 
events, activation of computing events, sensed and computed parameters’ values, 
etc., with observed physical and environmental events. Trained this way, machine 
learning models the operational behavior of the cyber physical systems and can 
be used to highlight unexpected behavior and anomalies. The use of machine 
learning in this case is inherently incomplete. While well trained machine learning 
algorithm/model is expected to generalize and cover the CPS operation space, there 
is no practical, assured way to ascertain that it covers all of the possible cases of
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the application/CPS-operation, e.g., corner and unexpected cases. Such machine 
learning model will produce false positives and false negatives. The quality of 
machine learning output (prediction) is significantly dependent on the methods, the 
quality of data, and models used for training. However, with proper operator due 
diligence and supervision, the deployment of machine learning can significantly 
improve the safety and security of CPS operation, as a complementary means to the 
traditional model-based mechanisms. 

3.1 Enhancing CPS Robustness with Machine Learning 

It has been well established that the traditional cyber techniques in software and 
firmware can no longer sufficiently protect the system and ensure safe operation 
of the cyber physical systems when attacks are launched against the physical 
components of the CPS, such as signal spoofing or using sound wave to resonate 
the IMU sensors. As a result, undesirable performance or even loss of control 
would occur. Given that attacks/faults cannot be fully prevented, fault/vulnerability 
tolerance and CPS resilience and recovery strategies are required. 

Traditionally, there are two types of fault-tolerant control: passive fault-tolerant 
control (PFTC) and active fault-tolerant control (AFTC). AFTC has a fault detection 
and diagnostics (FDD) component to identify the source of the fault, reconfigure 
a controller, and compensate for such fault. The FDD component is usually an 
observer and can generate residual signals to indicate the fault. Both sensor and 
actuator attacks or failures can be detected with system models. Meanwhile, PFTC 
does not have an FDD mechanism, but aims to improve the controller’s robustness 
and tolerate the fault condition or attack. AFTC can pinpoint the fault and act 
accordingly, but if the FDD is not designed with care, the implementation could 
lead to delay in detection or false positives and greatly affect the performance. While 
PFTC cannot isolate faults, they could potentially achieve more robust performance. 

Machine learning (ML) and reinforcement learning (RL) have been explored 
in developing FTC strategies. However, most of the ML/RL methods were only 
evaluated in simulation, and their real-world performance is unknown. Deploying 
reinforcement learning policies onto real systems in this case is extremely challeng-
ing since training has to be performed in simulation before trained models being 
transferred to real cyber physical systems to recover from sensor and actuator faults. 

Reference [19] demonstrates that RL-based policy trained in simulation can 
indeed be transferred to real unmanned aerial vehicles to recover from sensor and 
actuator faults. Unlike traditional FTC, this policy does not require fault detection 
and diagnosis (FDD) nor tailoring the controller for specific attack scenarios. 
Instead, the policy runs simultaneously alongside the controller without the need 
for fault detection and activation. When the CPS is operating normally, the policy 
generates no or minimum control command adjustment and does not interfere with 
the operation. When the fault condition arises, or the CPS is under attack, the policy
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Fig. 11 RL-assisted fault-tolerant control workflow, derived from [19] 

takes the state inputs and generates appropriate actuator command adjustment with 
little or no delay to compensate for the fault/attack condition. 

For simulation, identical sensor fusion and control algorithms must be imple-
mented so the closed-loop dynamics of the vehicle in the simulation can approx-
imate the real vehicle. The approach allows for simulation validation statically 
through open-loop and closed-loop tests. The fault resilient policy optimization 
is formulated with a standard reinforcement learning problem, where the agent 
is the quadcopter and the environment is the simulated world. The attacks were 
implemented by replacing the actuator signal or the sensor value with a random 
number. 

The training takes place and policy is implemented during dynamic simulation 
on existing legacy system through minimally intrusive software retrofitting. The 
control algorithm is used in a dynamic simulation during which a fault-tolerant 
policy is optimized using reinforcement learning to maintain CPS control under 
various simulated attacks. The RL-assisted fault-tolerant control workflow is shown 
in Fig. 11. 

Since the system dynamics is largely deterministic, reference [19] uses the  
actor-critic deep deterministic policy gradient (DDPG) algorithm for training. Fully 
connected multi-layer perceptions (MLPs) serve as the function approximator for 
policy representation. MLP splits between a nonlinear control module and a linear 
control module. Intuitively, nonlinear control performs forward-looking and global 
control, while linear control stabilizes the local dynamics around the residuals of 
global control. This improves training sample efficiency, final episodic reward, 
and generalization of learned policy, while requiring a smaller network and being 
generally applicable to different training methods. Only nonlinear fault-tolerant 
policy needs to be learned. This approach views the policy as an optimized FDD 
and FTC control approximated by a neural network. It can be leveraged (with the 
proper simulation setup) for a variety of cyber physical systems with a learned 
policy designed as an add-on to other closed-loop mechanisms. 

Another use of ML is to function as a surrogate (“Digital Twins”) and to be used 
as a reference to detect anomalies and cyber disruption. In this role, the ML model
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will correlate cyber and physical events and flag any inconsistencies, plausible 
faults or anomalies. Such approaches extend machine learning (ML) methods for 
analyzing system logs of CPS and identifying the key CPS entities to reconstruct 
the critical steps of a plausible attack. Forensic analysts collect diverse system logs 
from multiple CPS components. The massive volumes of logs are often analyzed 
offline or monitored in real-time to debug system failures and identify sophisticated 
threats and vulnerabilities. There are several techniques being developed to extract 
features/sequences from logs to automate intrusion and failure detection and to 
discover associations among disparate log events through event correlation. 

Working with the text logs requires integration of natural language processing 
(NLP) and deep learning techniques into data provenance analysis to identify attack 
and non-attack sequences. The typical steps include (i) processing system logs; 
(ii) building optimized causal dependency graph, from which the semantically 
augmented event sequences are constructed; and (iii) learning a sequence-based 
model that represents the attack semantics to recover key attack entities describing 
the attack story at inference time. The key challenges for such solutions are (i) 
additional overhead on a running system, (ii) integration of diverse logs, (iii) 
scalability of the large and complex causal graphs, (iv) accuracy of constructed 
sequences models, and (v) efficient automation. 

One of the promising approaches is based on the assumption that the crucial steps 
of different attacks in a causal dependency graph may share similar patterns. This 
allows for identification of key attack steps through an attack symptom event, based 
on those sequences that share semantically similar attack patterns to the ones it had 
pre-learned. Such knowledge helps to substantially save time when investigating 
large causal graphs and helps in constructing the attack story from a limited number 
of attack symptoms. 

3.2 Roles and Pitfalls of AI in CPS 

As the complexity of automation increases, the roles machine learning may play 
in CPS are also expected to grow. The use of machine learning often requires an 
extensive set of labelled data for training, and the curation of this large, labelled 
data set is often problematic. While data can be scraped from the Internet, labelling 
them requires tedious manual effort, and is often outsourced to third-world country 
or Mechanical Turk (Amazon). It can be a very expensive proposition. 

Fortunately, many CPS operations are governed by physics, with formulas and 
models that have been developed and proven over decades. Due to the computation 
limitation of many CPS devices, and the potential complexity of the interaction 
among physical phenomena, it is often not practical to deploy detailed physics 
models as reference to the operation of the CPS infrastructure. A surrogate—a 
(computationally) lighter weight machine learning algorithm/model—can be trained 
with labelled data generated by these complex physics models and practically
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deployed as the reference model. This surrogate model trades off precision and 
determinism/correctness with computation cost. 

However, machine learning for cyber components at the level of software execu-
tion is quite challenging. Unlike natural language, image and video processing, there 
is no public, large-scale, comprehensive, and well-labelled data set that researchers 
can use for evaluating the efficacy of machine learning for cyber security and 
resilience. Research works in this area are often forced to develop their own data 
for training and evaluation. This effort is both expensive and non-comprehensive, 
limiting the quality and generality of the research effort. 

The periodicity and predictability of CPS operation help reduce the overall 
challenge, as they potentially provide “structures” and “constraints” for the learning 
problem at hand. In machine learning, knowledge about the problem domain and 
relevant features extracted from the domain knowledge still play a critical role. 
Properly observing/incorporating physics-based models in the CPS software and 
machine learning process will help focus the training process, constrain the search 
space, and enhance the performance of the resulting machine learning model. 

Transfer learning offers an appealing way to help reduce the size of training data 
needed to achieve reasonable performance. Employing transfer learning, one can 
adopt a suitable pre-trained ML model whose size and structure can accommodate 
the target problem space. The pre-trained ML model is expected to have its 
internal weight well configured and distributed, especially for the application it was 
trained for. It serves as the initial condition and foundation for training the target 
application. This pre-trained model will then be trained again with labelled data for 
the new (target) application. 

Employing pre-trained model, the required training data is not as large as that 
of training the machine learning model from scratch. The trade-off is that the 
configuration and many of the hyper-parameters of the neural networks are not 
tunable and can incur the computing cost of employing larger than optimum (for 
the target application) neural networks. Large Language models, e.g., GPT-4, BERT, 
etc. are powerful examples of pre-trained models for natural language. It is harder to 
find a suitable pre-trained graph-based machine learning model, as the data encoding 
for graph neural networks is generally very specific to the application. Fortunately, 
the training data requirement for various graph neural networks tends to be modest. 
For cyber components and software execution that are typically represented in 
graphs, it is still unclear how and how well transfer learning may help in model 
training with reduced data set. 

Generative Adversarial Network (GAN) offers another attractive method in 
dealing with training data. A GAN consist of two neural networks, the generator 
and the discriminator. In a GAN setup, the two neural networks contest with each 
other in the form of a zero-sum game, where one agent’s gain is another agent’s 
loss. The generator strives to generate samples that fool the discriminator, and the 
discriminator strives to accurately detect or classify the generated samples. Both 
neural networks are trained together and co-evolve against each other. After the 
initial setup, the generator and discriminator will challenge and train each other in
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an unsupervised manner. GAN requires minimal if any training data, making it very 
attractive for domains lacking large-scale, labelled data. 

Unwise use of ML, such as employing generative adversarial network (GAN) 
without properly constraining it with physical models/rules, will likely violate the 
laws of physics and make it inappropriate or even dangerous to deploy. This is 
because unconstrained GAN will operate and explore solutions in an (un-grounded) 
virtual world with a much larger space than that of the physically constrained 
environment the CPS operates within. As GAN is a very attractive method, it 
is important to understand the problem space before deploying it. To illustrate, 
consider two slightly different applications. One is a valid application of GAN, and 
the other is not. 

In the first application, a neural network is being developed for detecting malware 
(a discriminator). To anticipate 0-day malware, it is trained in a GAN environment— 
a malware generator neural network is developed and coupled with the malware 
detector in a GAN configuration, and then let loose (they play against each other). 
This is an appropriate and efficient way for inoculating the detector (discriminator) 
against 0-days. 

In the second application, a dark-hat is mining for 0-day malware that is 
guaranteed effective against a target that is defended by VirusTotal. The dark-hat 
decided to deploy GAN, using a similar set up as the first application above. This 
is an ineffective solution, and the dark-hat will have false-confidence that his mined 
0-day will be effective, for the following reason: his discriminator is not grounded 
to and does not represent VirusTotal. Developing a discriminator that can become 
a surrogate to VirusTotal will be very difficult if not impossible. VirusTotal and its 
evolution is influenced by factors that are not under the dark-hat control. The Dark-
hat’s discriminator will respond and evolve to the generator challenges in a manner 
that is independent of VirusTotal, and provide feedback to the generator that does 
not reflect VirusTotal behaviors. One can speculate that given enough resource and 
time, one can train a super discriminator that is better at detecting malware than 
ViriusTotal. However, unless one can prove or have well founded confidence that the 
superior discriminator is a complete superset of VirusTotal capability (no Malware 
that VirusTotal can detect the discriminator cannot detect), it still cannot provide the 
assurance that the synthesized malware will pass detection by VirusTotal. 

3.3 Future Direction for AI in CPS 

As discussed in previous sections, statistical models embodied as neural networks 
(machine learning) are effective in CPS related automation, including surrogate for 
control policy, automated fault recovery [19], surrogate as digital twin, anomaly 
detection, etc. 

However, care must be taken in deploying neural networks as they are after all 
statistical machinery and hence cannot completely capture causality and are prone 
to make mistakes. Unless the utility property of the application itself is statistical,
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an error detection and exception handler will be required to detect and mitigate 
the effect of incorrect neural network results. An application is said to have a 
statistical utility if occasional mistakes are expected and tolerated, as long as their 
frequency is not too large (below a certain threshold) and the overall performance 
of the algorithm is still above the acceptable performance level. That is, in an 
application with statistical utility, only average matters and individual error does 
not. An application does not have a statistical utility if an individual error/mistakes 
matters. 

CPS is a field where the inertia of the physical systems can tolerate a limited 
duration of errors. However, an individual CPS is susceptible to prolonged errors. 
A system of CPS devices provides additional resilience, as long as the effects of 
prolonged errors in a subset of the system components are generally observable 
within the systems, and the overall systems adapt to the anomalies, or an operator 
can be alerted for and rectify the operational anomalies. 

Various forms of neural networks and various configurations of systems of neural 
networks have been deployed in CPS infrastructures. Machine learning will also 
excel in approximating the modeling and controlling of the behavior of a complex 
system whose behavior is not easily describable with logic or sets of logic. The role 
of neural networks and systems of neural networks is expected to grow in CPS and 
process control & automation in general. 

Machine learning excels when the utility of the application itself is statistical, 
and when the application logic is extremely complex to be completely captured 
using logic or other formal methods. For this reason, an understanding of the 
problem’s space, property and the environment surrounding the problem is the key 
for successful application of neural networks and the selection of the particular 
neural network algorithms. A good understanding of problem space will also help 
avoid pitfalls described in the previous section. 

During our journey of studying the property of a problem or task and their 
potential solutions, the authors observed that it is easier to solve problems of 
statistical nature with statistics, and vice versa, it is simpler to solve problems of 
logical nature using logical process. This dichotomy is analogous to the dichotomy 
of frequency domain and time domain in signal processing. There are classes of 
problems that are simpler to solve in frequency domain, and there are other classes 
that lend themselves to have natural solutions in time domain. In general however, 
while less efficient or precise, statistical process can be used to approximate a 
logical one, and logical process (such as logic in modern digital computer) can 
emulate/simulate statistics. 

A system of machine learning algorithms can be arranged in logical manners or 
simply feed each other for large scale automation. Properly designed systems of 
machine learning algorithms may mask or alleviate individual algorithm weakness 
and provide much more accurate and capable ultimate results. There may also be the 
case where it is prudent to include logical reasoning algorithms into the systems of 
neural networks, creating hybrid symbolic and statistical (neural networks) systems. 

It can be argued that arranging multiple neural networks in a logical pipeline has 
already shown the promise of hybrid logical-statistical system design. For example,
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ONR developed the Learn2Reason concept [20, 21], advocating the development 
of a hybrid system of neural networks algorithms and logic-based reasoning. The 
development of Learn2Reason was inspired by Daniel Kahneman’s system-1 and 
system-2 concept with respect to thinking fast and slow [22]. Initial description of 
Learn2Reason [20] suggests a blackboard like implementation where the logical and 
probabilistic/statistical process interact, however, most of the research mentioned in 
[21] employed the pipelines structure. Recent news [23] indicates that Google’s 
large language model employs logic, in term of generated program, to solve 
particular tasks where logical processes clearly surpass statistics, e.g., counting, 
performing arithmetic calculation, reverse spelling a word, etc. The article also 
stated that Google was following Kahneman’s system-1 and system-2 concept [22] 
in this work. 

A hybrid logical and statistical (neural network) based machine learning is the 
future. It allows for both statistical process and logical process to do what it can do 
best, and together they provide a superior performance than that of each individual 
type (logical or statistical). This hybrid learning system will find its place in CPS 
and CPS-based critical infrastructure of the future. 
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